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ABSTRACT

Many multimedia applications, such as the World-Wide-Web (WWW), video-on-demand (VOD)),
and digital library, require strong support of a video database system. In this paper, we survey various
approaches to content-based video data retrieval. Compared with traditional keyword-based data retrieval,
content-based retrieval provides a flexible and powerful way to retrieve video data. We discuss three
approaches in depth. First, since video segmentation is an elementary task in video index construction,
we discuss an approach to detect shot changes for video segmentation, which is based on the processing
of MPEG compressed video data. Second, since a video object consists of a sequence of frames, the
techniques for retrieving video objects based on the similarity of key frames are addressed. Third, we
discuss a video query model and video query processing techniques based on the symbols in a video object.
The notion of two-dimensional strings is extended to obtain three-dimensional strings (3D-Strings) for
representing the spatial and temporal relationships among the symbols in both a video object and a video
query.

Key Words: video databases, content-based retrieval, video indexing, shot change detection, video query
processing, key frame matching, approximate query processing, motion track, temporal and
spatial relationships, 3D-Strings

[. Introduction specify their queries. Furthermore, various techniques
should be developed to efficiently process multimedia
In recent years, progress in the development ofjueries.
hardware and storage devices has made the use of Most of the previous research on modeling and
digital multimedia, including video, images, graphics,querying multimedia objects has focused on image
animation, and audio, very common. Many multimedialatabases (Chareg al., 1988; Chiueh, 1994; Jagadish,
applications, such as the World-Wide-Web (WWW),1991; Liu and Chen, 1996a; Myret al,, 1995; Petrakis
video-on-demand (VOD), and digital library, requireand Orphanoudakis, 1993). Unlike the QBIC project
strong support from a multimedia database system. IfMyron et al, 1995), one can retrieve image objects
addition to the storage management for the multimediaccording to their color, texture, or shape characteristics.
objects, a main service that a multimedia databas&nother approach to querying image databases is to
system should provide is to enable its users to easilgonstruct an iconic index for the image objects (Chang
and efficiently retrieve multimedia objects accordinget al., 1987, 1988); image queries can then be posed
to their content. As multimedia applications becomesgainst the symbols and their spatial relationships.
more and more popular, the need for content-baseldased on the R-tree data structure, a query language
multimedia data retrieval is getting more importantcalled PSQL was proposed (Rousspowdosil., 1988).
(Chenet al,, 1995; Chiueh, 1994; Choat al., 1996; Although PSQL is suitable for geographical data, such
Dimitrova and Golshani, 1995; Gudivada and Raghavargs maps, it is not suitable for general images, such as
1995; Jagadish, 1991; Liu and Chen, 1997, 1999; Myrophotographs and medical images.
et al., 1995; Smoliar and Zhang, 1994; Wai and Audio objects can be classified into two groups,
Chen, 1997; Weisst al,, 1994, Yoshitaka, 1994). To music and sound objects, according to whether they
provide the ability of content-based multimedia datehave associatestaffs For audio objects, Woldt al.
retrieval, a multimedia query language or query inter{1996) proposed an approach to retrieve them based
face should be developed by means of which users cam their content. In their approach, an N-vector is
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constructed according to the acoustical features of amhich support video data retrieval based on the cin-
audio object. These acoustical features incladdness ematic structure of video objects are explained in
pitch, brightness bandwidth andharmonicity which  Section Ill. A method for key frame matching is
can be automatically computed from the raw data. Thdiscussed in Section IV. The model and query pro-
N-vector of acoustical features is then used to classifgessing techniques for video queries based on the spatial/
sounds for similar searching. However, the acousticakmporal relationships of symbols in video objects are
features are at a level too low for human beings. Thdiscussed in Section V. Finally, Section VI concludes
most straightforward way for a naive user to querythis paper and provides some challenging research
music databases is to hum a piece of music as the quagpals.

example to retrieve similar music objects. This ap-
proach was adopted in Bakhmutoea al. (1997),

Balaban (1996), Chen and Chen (1998), and Géias
al. (1995). Ghiast al. (1995) proposed an approach
to transform a music query example into a string which

Il. Features for Content-based Video
Indexing

In this section, we analyse features which can

consists of three kinds of symbols (“U”, “D”, and “S”, represent the content of video objects.
which represent a note is higher, lower, or the same (1)Image characteristics of key frames: A video

as its previous note, respectively). The problem of
music query processing is then transformed into that
of approximate string matching. However, using only
three kinds of symbols is too rough to represent the
melody of a music object. Moreover, the proposed
string matching algorithm does not take music char-
acteristics into consideration. To develop a content-
based music database system, we have started a project
calledMuse(Chouet al, 1996; Chen and Chen, 1998;
Liu and Chen, 1996b; Liet al, 1999). In this project,

we have proposed three different methods for content-
based music data retrieval. In L&t al (1999), we
treated the rhythm, melody, and chords of a music
object as a music feature string and developed a data
structure called 1D-List to efficiently perform approxi-
mate string matching. Similarity measures in the
approximate string matching algorithm are designed
based on the music theory. In Cheual (1996), we
considered music objects and music queries as se-
guences of chords. An index structure was developed
to provide efficient partial matching ability. In Chen
and Chen (1998), we propose an approach to retrieving
music objects by means of rhythm.

Compared with other media types, such as text,
image, and audio, video contains richer information
(Gibbset al., 1993; Tonomura and Abe, 1994). However,
this richness results in the lack of a generally accepted
representation of video content. As many features can

object consists of a sequence of image frames.
We can use some representative framlesy (
frameg9 as an abstract image of a video object.
Thus, image characteristics, such as color, texture,
shape, and sketch, can be specified as query
conditions to retrieve video objects which contain
image frames which have similar characteristic
measures (Myroret al., 1995).

(2) Cinematic structure: the raw data of a video

object forms a stream of frames. However, a
video object intrinsically has a hierarchical
structure. The basic unit in the hierarchical
structure is ashot(Smoliar and Zhang, 1994).
Shots in the same place fornseene Several
scenes form aequencéAllen, 1983). In general,

a video object consists of a set of sequences. We
can pose a video query against the structure of
video objects, for example, to retrieve all the
shots in the second scene of the first sequence
of a video object.

(3) Symbol containment: aymbolis an object ap-

pearing in a multimedia object (K al.,, 1996;

Liu and Chen, 1999). Assuming that the symbols
contained in a multimedia object can be iden-
tified by means of suitable pattern recognition
techniques or manually, we can retrieve multi-
media objects containing some user-specified
symbols.

be used to represent the content of a video object, many (4) Symbol motion tracks: In a video or animation

approaches to content-based video data retrieval
have been proposed recently. In this paper, we provide
a survey of recent research results on content-based
video data retrieval and address three important
techniques for video indexing and video query
processing.

The rest of this paper is organized as follows. In
Section I, we summarize features which can be used
to represent video objects. The indexing techniques
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object, the appearance of a symbol forms a three
dimensional curve (3D curve). We call this
curve themotion trackof the symbol. Using a
graphical query tool, users can draw a 3D curve
to retrieve multimedia objects which contain
symbols with similar motion tracks (Chen al.,
1995).

(5) Spatial and temporal relationships between

symbols: there may exist spatial or temporal
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relationships between the symbols in a multime-misdetection may occur due to a quick variance of

dia object, and we can pose a multimedia queryideo contents, such as the effect caused by an elec-
against these relationships. For instance, we camonic camera flash. A loss of detection may occur due

retrieve video objects which contain a frameto the similarity of video contents in consecutive shots.

with an eagle flying above a tree and a later fram®tsuji and Tonomura (1993) and Uedgaal. (1991)

with a lake. considered the case of large differences in the contents
of continuous frames due to fast motion (but not shot
[1l. Query by Cinematic Structure change). Using a filter for detecting such situations,

misdetection in fast motion video frames can be reduced.

For content-based retrieval, retrievals based o®shot change detection in special applications (Brown,
the image features of video frames are more efficient995; Philips and Wolf, 1996; Swanbergg al.,
and practical. By measuring the similarities amondl993; Zhanget al, 1993), such as news programs, can
video frames, a hierarchical cinematic structureachieve better results. This is because the detecting
(Davenportet al.,, 1991), including theshots scenes algorithm can focus on the characteristics of the
episodesof a video, can be constructed as an indexapplications, and knowledge can be provided to assist
Users can browse the hierarchical cinematic structurdetection.
to retrieve cinematic units of interest. For example, Adjeroh and Lee (1997) presented a method to
users can specify the following query to play the firstdynamically adjust the threshold for detecting shot
shot of the third scene of the second episode of thehanges. Moreover, a window size (in terms of the

current video object (Liu and Chen, 1997): number of frames) was defined to avoid falsely detect-
ing more then one shot change in a short period of time.

SELECT S3.play() All these detection methods for uncompressed video

FROM current Video V, V.Episode E1, E1.Scene S2, S2.Shot $tata suffer from the following drawbacks: (1) process-
WHERE E1.EpNum = 2 ing is time consuming; (2) since video data are often
AND S2.ScNum = 3 stored in a compressed format, such as MPEG (Gall,
AND S3.ShNum = 1 1991), video data should be decompressed in advance

before processing.

A shot is a sequence of frames which represents  Lin (1996), Chang (1997), Armaet al. (1993),
continuous action in time and space. The contents @&nd Yeunget al (1995) proposed shot change detection
the frames belonging to a shot are similar. Thereforeglgorithms based on compressed data. Armgaal
shot change detection can be performed through sim{1993) proposed an approach that computes the Dis-
larity measurement of continuous frames. Most of therete Cosine Transform (DCT) coefficients for each
previous works on shot change detection were basdtame. These DCT coefficients of each frame are stored
on the processing of uncompressed video data. Colas a set of vectors. The inner product of the vectors
histogram comparison and pairwise pixel comparisomf two continuous frames is computed to measure their
are two straightforward approaches (Tonomura andimilarity. When the similarity degree falls in a range
Abe, 1990; Nagasaka and Tanaka, 1991; Chua andghere a shot change cannot be determined, the color
Ruan, 1995) to similarity measurement. The colohistogram comparison approach has to be performed.
histogram approach summaries the color distributionn MPEG coded video data, a frame can be referenced
of a frame and computes the differences between it arftyy or can reference to other frames. The reference
the color distributions of its adjacent frames. Wherratios can be computed for similarity measurement
the difference exceeds a predefined threshold, a shamong frames. In Chang and Lee (1995), and Meng
change is detected. Without considering the spatiadt al. (1995), both references and DCT coefficients
distribution of colors, two different frames with the were used to detect shot changes. Shot changes with
same color histogram will be treated as being veryhe effect ofdissolvewere considered.
similar. In the pairwise pixel comparison approach, Kuo and Chen (1996) extended a method we pro-
the values of the pixels are compared pixel by pixelposed before to detect shot changes for MPEG coded
The sum of the differences of the values is computediideo data. This approach analyzes references among
A shot change is detected when the sum exceedsMPEG coded frames. It is more efficient than that of
predefined threshold. The pairwise pixel comparisorChang and Lee (1995) and Meeg al. (1995) since
approach can easily lead to misdetections since it ignly the references of frames have to be evaluated. A
very motion sensitive. function is used to quantize the evaluation results to

To improve the quality of detection, misdetectionsshot change probabilities such that a shot change can
and the loss of detection should be avoided. Ae easily recognized.
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1. MPEG Compressed Data Analysis

MPEG is a standard for video compression which Forward reference
achieves a high compression rate. It is popular for use
in many applications. Video data are often stored in| | _[_1_ 1.t .t 1.1, ) - x-
MPEG format. Shot change detection algorithms which Backward reference

perform image processing on raw video data are not

suitable for MPEG coded video. Additional processing w MM

for decompressing compressed video into raw video

has to be performed first. Therefore, it is more efficient Fig. 1. Example of frame references.

to directly detect shot changes in MPEG compressed

video. In order to improve the compression rate, in

MPEG uses motion compensation technology to reduceeding | or P frame. That is, the macroblock is a

the codes of similar image patterns among adjaceribrward-prediction coded macroblock when a similar

frames. Therefore, similarity matching is performedimage pattern is found in the preceding | or P frame.

in the process of encoding. In the following, we will The macroblock is intra-coded when a similar image

introduce the MPEG data format and discuss the inpattern can not be found in the preceding | or P frame.

formation which can be used for shot change detectiold B frame may have references to its adjacent | or P
frames. Bidirectional references are allowed. The

A. MPEG Data Format macroblock in a B frame can be a bidirectional-pre-
diction coded, forward-prediction coded, or backward-

In this section, we will introduce the information prediction coded macroblock.

needed for shot change detection in MPEG coded data. In MPEG coded video, the number and sequence

The MPEG coding algorithm uses DCT to compres®f |, P, and B frames are pre-determined. In general,

raw video data. Additionally, it uses block-based mothere may be a number of P and B frames between two

tion compensation to reduce temporal redundancy. Blframes, and a number of B frames between two P

means of motion compensation, codes of similar blockirames or between an | and a P frame. An example

can be reduced by referencing to the image contents shown in to illustrate the structure of MPEG

of adjacent frames. The more blocks a frame referencespded frames. The ratio of the numbers of I, P, and

the more similar these two frames are. Therefore, bB frames (called théPB-ratio) is 1:2:6. An | frame

analyzing the references among coded frames, similais followed by two P frames and six B frames in a

ity can be determined. sequence.

In MPEG coding, a frame is divided into

marcoblocks. Each macroblock is a 16 by 16 imag8. References among Video Frames

as a basic coding unit. A macroblock can be coded

by DCT or references to its adjacent frames when it For P frames and B frames, macroblocks may

matches the similar image patterns of these frames. weference to adjacent frames. We can compute the

macroblock coded by DCT is called amtra-coded number of marcoblocks for each type of reference to

macroblock. Macroblocks referencing to similar imagemeasure the similarity with the adjacent frames. We

patterns are callefbrward-prediction codedback- define two types ofeference ratiofRRs) as follows:

ward-prediction codedor bidirectional-prediction (1)Forward reference ratio

codedmacroblocks when they reference to the image

patterns of the preceding frame, subsequent frame, or (FRRER{/N,

both preceding and subsequent frames, respectively. A

reference to the preceding frame is calletbeward whereRs is the number of the forward-prediction
reference and on to the subsequent frame makward coded macroblocks of a frame axds the number
reference of total macroblocks of the frame.

By means of referencing patterns of macroblocks, (2)Backward reference ratio
three types of frames, called thérame,P frame and
B frame, can be defined. All the macroblocks in an (BRRER/N,
| frame must be intra-coded macroblocks. That is, the
| frame is independently coded. It can be decompressed whereR,; is the number of the backward-predic-
without referencing to other frames. Macroblocks of tion coded macroblocks of a frame aNds the
the P frame may have forward references to its pre- number of total macroblocks of the frame.
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Low FRRs to previous shot
\
-

Fig. 2. The varieties of reference ratios when a shot change occurs.

Low BRRs to next shot\

Shot change

The range of both FRR and BRR is between 0 and
1. A P frame has an FRR. A B frame has both an FRR
and a BRR. When the FRR is high, this indicates that
the frame is similar to its preceding frame. When the
BRR is high, this indicates that the frame is similar
to its subsequent frame. The RR is regarded as high
when it exceeds a given threshold. An | frame has no
FRR or BRR. Therefore, to measure the similarity
between an | frame and its adjacent frames, we have
to evaluate the FRR or BRR of these adjacent frames.

In a video sequence, the contents of continuous
frames are similar when the shot does not change.

may have low FRRs to the previous shot, as shown in

A shot change may occur in any type of frame.
In the following, we will consider situations in which
shot changes occur at | frames, P frames and B frames,
respectively.
(1) A shot change occurs in an | frame: Because |

frames are encoded independently of other
frames, they do not have forward and backward
references. What we need to take into account
is the B frames between this | frame and the
preceding | or P frames. These B frames use
this | frame as a backward reference for encoding.
They cannot easily find similar image patterns
from this | frame, so their BRRs must be low.
We do not consider the FRRs of these B frames
since they are not relevant to this | frame. The
B frames between this | frame and the subse-
guent P frame need not be considered since they
are not relevant to shot change detection.

(2) A shot change occurs at a P frame: The B frames

between this P frame and the preceding | or P
frame behave in the same way as previously
described. The difference in this case is that P
frames have forward references. Since this P
frame is the shot change frame, it cannot easily
find similar patterns from the preceding | or P
frame. The forward reference will be low.

Therefore, the reference ratios of these frames are high. (3) A shot change occurs at a B frame: This B frame

When a shot change occurs, the contents of the frames
are not similar to those of the preceding frames. The
reference ratios are then low.

In the next section, we will propose an approach
to detecting shot changes which evaluates the reference
ratios of MPEG coded frames. Since only the infor-
mation of the reference ratios of frames has to be
computed, there is no need to decompress each coded
frame. A large amount of time can, thus, be saved.

itself will have a low FRR. If there exist B frames

between this B frame and the preceding | or P
frame, their BRRs must be low. If there exist
B frames between this B frame and the next |
or P frame, their FRRs must be low, too.
Furthermore, if the first non-B frame in the fol-

lowing sequence is a P frame, the FRR of this
P frame must be low.

Consider the MPEG video sequence showRiin

For example, a video sequence contains 10,000 coni- If a shot change occurs at | frame 13, the B frames

tinuous frames.

Each frame is a 256 by 256 imagell and 12 will have low BRRs. If a shot change occurs

That is, a frame contains 256 macroblocks. To comput@ P frame 10, the BRRs of B frames 8 and 9 will be
the reference ratio of a frame, 256 add operations mukiw, and so will the FRR of P frame 10. The situation
be performed. This approach is more efficient thans different when a shot change occurs at B frame 5
color histogram based approaches and the approach B frame 6. If B frame 5 is the shot change frame,
which computes the DCT coefficients of frames. P frame 7 and B frames 5 and 6 will have low FRRs.

If a shot change occurs at B frame 6, the BRR of B
2. Shot Change Detection

A. Shot Change Occurrence Analysis

H
0w
w w
N
W
o
~ U
o w
i

1

A shot change often causes the contents to b
different from those of the previous shot. Therefore, }1’0
frames of the previous shot may have low BRRs to the
next shot. On the other hand, frames of the next shot

—
o]
o
o]
o)

Fig. 3. An example video sequence.
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preceded by a B frame and followed by an | or a P frame.

I B B P B B P B

0 . 5 3 4 s 6 7 Therefore, there are two masksg Eind M, for the B
frame. M indicates that (1) the current B frame should
have a low FRR, (2) its subsequent B frame should have

B P B B ! a low BRR, and (3) its subsequent P frame should have

8 ’ ooonn a low FRR. If the subsequent frame is an | frame, it

can be skipped.

We will use the previous example shown in Fig.
3 to demonstrate this kind of checking. To check |
frame 13, the M mask is applied. By checking the
frame 5 will be low, and so will the FRRs of P framemask frames of | the preceding two B frames should

Fig. 4. An example of computing the shot change probability.

7 and B frame 6. have low BRRs when | frame 13 has a shot change.
That is, B frame 11 and 12 have low BRRs.
B. The Mask Matching Approach In mask matching, to determine whether a frame

has a low reference ratio, the reference ratio has to be
From the above analysis, to detect whether a frameompared with a predefined threshold. Different types
has a shot change, the FRRs and/or BRRs of this frantd videos may have different thresholds.
and its adjacent frames have to be examined. In this
section, we will present mask matchingpproach to C. Implementation
detection of possible shot changes. This approach
examines MPEG coded video frame by frame. For Some experiments were done to verify the validity
each video, a set of masks is defined. The RRs of thaf the mask matching approach. In the experiments, we
frames specified in the masks are evaluated. Differerdesigned a function to transform the results of mask
types of frames have to be matched with differenmatching intashot change probabilite The probabil-
masks. When a frame is matched with the mask, it igy was low when a frame was similar to its adjacent
detected as a shot change frame. Since there are |,fRames. This function will be introduced in the follow-
and B frames, the types of masks are denoted as |_frarmg section.
masks, P_frame masks, and B_frame masks, respect- Our approach takes advantage of the concept of
ively. mask matching to detect whether a frame has a shot
A maskdenotes the qualification for detecting change or not. To implement this concept, the results
shot changes in frames. It consists of two parts. Onef mask matching are quantized to a value which
is the type of this mask. The other is a sequence adfidicates the shot change probability. The shot change
mask framesvhich have to be examined. A mask frameprobability functionP is as follows:
M; can be denoted as follows:

RRf21 + RR?Z ot RRon

M;=FR, ID:1_R|qfl+RRf2+... +RR; (1)

whereFO{l, P, B}, RO{f, b}. F denotes the frame type
of this mask, an®R denotes the RR, which should be wheref,, f,, ..., f, O the mask frames of the current
low (f for FRR and b for BRR). High RRs are not usedirame andRR; is the corresponding RR of mask frame
to detect the occurrences of shot changes. fi. If ORR;=0, I<i<n, thenP is set to 1:
A mask M can be denoted as
M1={l; (Bb, Bb, @1)};
M:{ maSk_typE(Mli M21 (R3] Mn)},
M2={P; (Bb, Bb, @Pf)};
where mask_typ&l{l, P, B}, M; are mask frames.
To denote a sequence of frames, the mask frame  M3={B; (@Bf, Bf , Pf) or (@Bf, Bf, 1)};
beginning with an ‘@’ indicates the current frame. For

example, as shown iR , there are four masks for M4={B; (Bb, @Bf, Pf) or (Bb, @Bf, I)};
the video with the IPB-ratio 1:2:6. Mask Nk for the
| frame and M is for the P frame. Because of the IPB- Masks of the video with IPB-ratio 1:2:6.

ratio 1:2:6, the B frame may encounter two different
situations: in one, it is preceded by an | or a P frame  The shot change probability is between 0 and 1.
and followed by a B frame, and in the other, it isThe larger the value is, the more possible it is that a

~ 454-



Content-based Video Data Retrieval

Fmmem e - 1. Approach Overview
‘

This subsection will present a system overview
_________ of our approach. It contains three agents. They are
| Query | 1 Y video indexing agenguery interface agengndquery
i ! i fent | processing agentas shown in Fig. 5.
(1) The video indexing agent constructs key frames
for incoming videos. A key frame is a dominant
frame of a shot, where a shot presents a sequence

.
1Query interface agena

Fig. 5. System overview of the video retrieval system.

shot change will occur at the frame. The second term of continuous video frames. The image contents
in Eq. (1) is the weighted sum of the corresponding of the key frames are stored for similarity
RRs of mask frames. Based on the weighted sum, if matching when a query is posed. When the
one of the RRs is much larger than the others, then the image contents of the key frames are stored, the
result of the weighted sum will approach the larger average luminance of each key frame is com-
RR. Therefore, the shot change probability will be low puted and stored as an index of a filter.
if there exists a mask frame with a high RR. For (2)The query interface agent enables users to specify
example, consider the video stream shown in Fig. 4. gueries and invokes the query processing agent
The mask used to detect P frame 6 was {P; (Bb, Bb, for query results. A query is simply specified
@Pf)}. by giving a sample image (calledjaery imagg
Suppose the BRR of B frame 4, BRR of B frame The threshold of the similarity degree can be
5 and FRR of P frame 6 are all 0.2. The probability adjusted for different matching criteria. Video
that a shot change will occur at P frame 6 is computed clips containing the key frames which are similar
as (+0.2)=0.8. This indicates that P frame 6 is very to the query image are shown as query results.
probably a shot change frame. (3) The query processing agent analyzes the query
We will use to illustrate another example. image and compares it with the key frames for
Suppose the BRR of B frame 4 is 0.8, the BRR of B most similar matching. It can be divided into
frame 5 is 0.2 and the FRR of P frame 6 is 0.2. The two steps. First, we compute the average lumi-
shot change probability can be computed a(8)= nance of the query image, and key frames with
0.4 by applying (2.1). The probability that a similar average luminance are chosen for ex-
shot change will occur at P frame 6 is low in this haustive matching. It avoids exhaustive match-
case. ing on all key frames. Second, matching is
After all the shot change probabilities are performed between query images and the se-
computed, a threshold is defined to get the final result. lected key frames. The matching algorithm will
As long as the shot change probability of a frame is be presented in the next section. The query
larger than the threshold, it is regarded at@t change results are returned to the user via the query
frame interface agent.

V. Quer%/_ by Means of Key Frame 2. Similarity Matching of Key Frames
I

Matching
Similarity matching is based on comparison of the

This section will discuss techniques for the re-color histograms of dominant colors of different image
trieval of videos based on key frames. In this approactblocks. The color information is first analyzed. The
some representativieey framesare extracted as an steps are shown if
index. Users can query the videos using an example For an image, we count the number of pixels of
image, and the system compares the query image aedch color. The top colors with the maximal number
the key frames to find possible results. Parsing thef pixels are selected as dominant colors. Furthermore,
video into shots (i.e., shot change detection) is the firdhe image is divided into several square subimages.
step in constructing such indexes for querying vided he color histogram of the dominant colors is then
data. Similarity measurement is based on comparison
of the histograms of dominant colors. Moreover, the

average luminance value of the image is applied as Color histogram Dominant color Color distribution
filter to avoid matching on all key frames. Experiments| computation ™ selecion "1 computation
have been performed to show how this approach is

used. Fig. 6. Steps for color information analysis.
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Similarity 0811849 0.78121 (.774455 0.762532 0. 746094
lass Astronomy | Astronomy | Astronomy Person Astronomy

Fig. 7. Similarity matching between an astronomy image and other images.

computed for each image block. It considers the color number of pixels for dominant coldi of
distribution feature in the color histogram computation. subimage 2.
In the following, we will present the algorithm for (i) diff=0
comparison between a query image and key frames. Fori=1 to Cy4
We will first define a set of parameters that will
be used in our presentation. diff=diff+|P1(i)-P2(i)|
(1) C4: the number of dominant colors. The default
value is 64. sim=1-diff/(nxnx2).
(2)n: the block size of a subimage. Each subimage
is annxn image block. The default value Note: When the number of pixels of each domi-
is 16. nant color does not varyliff is equal to
(3)R: the range of colors that will be treated as 0, andsim is equal to 1.
identical. For example, suppoRe128 in the The cost of similarity matching between two

256 gray scale domain; the gray scales ofmages is high since the pixel values have to be com-
0~127 are treated as the same color, and sputed online. To reduce the processing time, exhaus-
are the scales 128~255. Whieis specified, tive matching between all key frames and the query
the domain of colors is reduced. image should be avoided.
These parameters can be adjusted for different  We provide amaverage luminance valu@LV)
applications. Next, we will present the algorithm forfilter to prune key frames which are not query results.

similarity matching between two images. It is based on a comparison of the ALV of the images
(1) Input the query image and a key frame. to be pruned. The ALV is the average of the luminance
(2) Transform the colors of the two images into theof all the pixels in the image. Therefore, the range of
new domain based oR. the ALV of an image is 0~255. For all key frames, the

(3) Compute the global color histogram to select théALVs can be stored in advance. When processing a
top C4 dominant colors for the query image. query, the ALV of the query image is computed. Key

(4) Divide each image, including the query imageframes which have similar ALVs are the possible results
and key frame, into a set of subimages, wheref the query. Additional similarity matching has to be

each subimage is amxn image block. performed between these key frames and the query
(5)Compute the similarity for two correspondingimage. On the other hand, key frames which do not
subimages: have similar ALVs are pruned. A threshold can be
(i) Let sim be the similarity degree of the two defined to determine whether two ALVs are similar or
subimages, not.
0<=sim<=1. 3. Experiment Results
Let diff be the summation of the differences The experiments were designed to demonstrate
of the numbers of pixels for each dominanthow our approach. The experiments can be divided
color of the two subimages. into two parts. First, we performed the similarity

Let P1(i) be the number of pixels for domi- matching algorithm on 100 images, which were clas-
nant colorDi of subimage 1P2(i) be the sified into five classes. The results show that images
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Fig. 8. Similarity matching between a painting image and other images.

which belonged to the same class may have had a higinore complex than those between symbols in a string
degree of similarity. Second, we chose three videos amat pattern.
randomly queried the image contents of each video. In this section, a video query model based on the
The results show that the queried images could beontent of video and iconic indexing is discussed. We
matched to the key frames which belonged to the samextend the notion of two-dimensional strings to three-
shot of the query images. dimensional strings (3D-Strings) to represent the spa-
We chose 100 images in five classes as outial and temporal relationships among the symbols in
experimental images. The five classes were animahoth a video and a video query. The problem of video
painting, astronomy, person, and plant. Each class hapiery processing is then transformed into a problem
20 images. We randomly selected one image from eadf three-dimensional pattern matching. We have de-
class and compared it with all the imagesigures 7 veloped an efficient three-dimensional pattern match-
and 8show the results of the classes astronomy anthg mechanism. To process a video query, we first
painting. The left most one is the query image. Theonstruct a 3D-String to represent the spatial and tem-
other images ranked as 1~5 in similarity. We foundoral relationships between symbols in the video query.
that similar images usually belonged to the same clas$hen, the symbol objects of a video object to be evaluated
The above experiments showed good results foin the video database are retrieved and organized as

matching of similar types of images. a 3D-List according to the 3D-String. The 3D-List is
a compact graph representation of the spatial-temporal
V. Query by Spatial and Temporal relationships between symbol objects in a video object.
Relationships among Symbols Then, the 3D-List refinement algorithm is applied to

the 3D-List to reduce the number of symbol objects in

Changet al. (1987, 1988) proposed the conceptthe 3D-List. Finally, the refined 3D-List is traversed
of a 2D-string structure for representing the contentto determine whether the video object is an answer to
of images. In this approach, each object in an imagge video query.
is represented by a symbol, and the orders of all the
symbols along the x-axis and y-axis are stored in twd. Video Index Tool and Video Index Struc-
strings. The notion of 2D-string structure can be tures for Symbol Objects
extended with some modifications to take into account
the characteristics of video, and the 3D-String structure  The video index tool shown inig. 9is a graphical
for representation a video query has been defined (Liinterface for building a video index of video objects.
and Chen, 1998). The problem of video query processt consists of a video index window and a video playout
ing is then transformed into a problem of three-dimenwindow. The video index window consists of a set of
sional pattern matching. Many string matching algoVCR buttons, an icon list, and an index display area.
rithms (Aho and Corasick, 1979; Baeza-Yates andt allows users to interactively select interesting sym-
Gonnet, 1992; Boyer and Moore, 1977) and patteribol objects of a video object and build corresponding
matching algorithms (Baker, 1978; Bird, 1977; Fan andndices for these symbol objects. First, the video object
Su, 1993) have been proposed in the past. Howeven be indexed is selected and played. When an inter-
they are not suitable for 3D-Strings since the relationesting symbol object appears, the user presses the VCR
ships between the symbols in a 3D-String are muchutton to pause the playout, chooses an icon represent-
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ing the symbol object from the icon list and puts it at Table 1. An Example Video Index Table
the position where the symbol object appears in the

video playout window. The corresponding symbolvideo_oid  icon_oid  symbol_oid X y frame
object will appear in the index display window. Thisyggo1 E S0001 0 2 4
step is repeated for interesting symbol object in thisooo1 E S0002 2 0 15
video frame. The object identifiers of the video objecty0001 E S0003 1 1 20
the icon that the symbol object belongs to, and th¥0001 T S0004 0 L L
S . V0001 T S0005 0 2 25
symbol object itself, the x, y coordinate values of thg, /7 T S0006 2 0 0
central point of the symbol object, and the number o{ggg1 H S0007 2 1 1
the frame at which the symbol object first appears ivooo1 H S0008 1 1 31
the video object are stored in a table calleidao index V0001 H S0009 2 2 22
table Table 1shows an example of a video index table V0001 H S0010 0 2 40
The video object V0001 contains ten symbol objects.
These symbol objects are associated with three icons.
2. A Motivative Example forward method is to match the two associated strings.

However, due to the complexity of the relationships
Before we formally describe the concept of 3D-between the symbol objects, this method is very
Strings for representing video queries and the datmefficient. For example, to find whethey andb,
structure 3D-List for processing video queries, in thismatchA=B, we have to check f,=d,=f, ag=b,=a,=c,=
subsection, we will use an example to illustrate oud,de;0c,=ds=c3f3 to find the symbol object that
approach. matchsC.
Assume a video query Q contains three icdgs, Instead of directly matching the two strings, we
B, andC. IconsA andB are at the same place in the use the string associated with a video query tama
x-axis, and icorC is on the right side of icoB (and plateand use a data structure to see whether the symbol
iconA). This information can be denoted as steng  objects of a video object can fit the template. Only
A=BOC. This notation can also be used to represernthose symbol objects of a video object that are asso-
the relative positions between symbol objects in a videoiated with the icons of a video query need to be
object. For example, assume that a video object V hagtrieved and checked. In this example, oajya,, as,
16 symbol objectsay, a,, as, by, by, €1, Cy, C3, dy, dy, by, by, €y, €y, andcs are retrieved, and three setsy {
ds, e, &, f1, fp, andfs (whereay, a,, andag belong a,, a3}, { by, by}, and {cy, c,, c3}, are formed. The next
to icon A, b; andb, to icon B, etc.), and that their step is to check whether there exist three symbol objects
relative positions are denotedase,=b,0f,=d,=f,0az;  selected from §;, a,, as}, { by, by}, and {cy, c,, c3},
=b,=a,=c,=d,[0 e;[0 c,=ds=c3[1f;. We say that the video respectively, that matcA=BOC. Instead of checking
object V is an answer to the video query Q if V contain8x2x3=18 combinations of these symbol objects, we
three symbol objects;, b;, andc,, such thag;=b;[Jc,. have developed a data structure to efficiently perform
To decide whether V is an answer to Q, a straightthe matching process. First those symbol objects
associated with the same icon are arranged according
to their sequence in the string as showri-in. 10(a)
Thenaz anda, are linked since they are at the same
position, which implies that they can be treated as a
symbol object for checking. Similarly, andcs are
linked. The number of combinations is reduced to
2x2x2=8. Checking the relative position betwesn
andb,, we find they matctA=B. a; andb, are, thus,
linked as shown in Fig. 10(b)a; andb, need not be
checked sincé, andb; are not at the same position
(they are not linked). Similarlya; andb, need not
be checked sinca; anda; are not at the same position.
Also, a, andb, need not be checked sinag andas
i are not at the same position. The remaining checking
1 process is as shown in Fig. 10(c)-(f). Totally, only six
checkings are needed.
Fig. 9. The video index tool. The discussion above only considers the relation-
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4

the central point of the icon. Information about the
shape or size of the icon is omitted to reduce the
complexity of query processing. We will relax this
limitation in the future.

Because the resolution of the screen showing the
guery interface tool and the resolution (size) of each

© @-
Vm
®o-

=0 ® >
@=@) © o
O=® €
®

@O= © o
©-0 @-
@=@) © o

@ ®) © video object in the video database can be different, a
A_B o C A_BocC A _B o C uniform resolution modeshould be provided as a basis
»»@ »>->@ .».» for performing similarity comparison between video
N a gueries and the index of video objects. Thus, the screen
) () (=) () @ . () area is divided intoX;anxYrank grids of equal size,
) =) Q ) whereX;ank and Yank are user specified. This concept

can be extended to the time dimension. The total time
@ © intervals of a video query and each video object are
both divided intoT,,n time intervals. The position of
an icon in the uniform resolution model, also called
the rank of the icon, can be defined as follows.
ships between symbol objects in the x-axis. When we

evaluate a video object against a video query, thBefinition V.2. (Rank of an Icoh Assume that the
relationships between the symbol objects in the x-axiosition of an Icon is (x, y, t), that the screen resolution
y-axis, and time-axis should all be checked. An efof the query interface tool iXma%Ymax PiXels and is
ficient algorithm should be developed to combine thalivided into X,aniYrank grids, and that the total time
one-dimensional results into the three-dimensionainterval of a video query is set My frames and is
results. This is another important problem we have tdivided intoT,,, time intervals. The rank of the icon

Fig. 10. A motivative example for video query processing.

deal with when we process a video query. | is defined as the tripleR((l), Ry(l), R(l)), where
) ) ) Re(1) =% Xank XmaxJ Ry(l):warank/YmaxD andRy(l)=
3. The Representation of Video Queries OxTrand Tmaxd
In this subsection, we will describe the video For any two icons in a video query, basically,

guery model and introduce the notion of 3D-Stringsthere are two kinds of spatial/temporal relationships

which are used to represent the spatial and temporhketween them, i.eadjacent relationshipsandappo-

relationships between the icons in a video query. sitional relationshipsas defined in the following.
Symbol objects which represent the same kind of

real world entities are grouped into an icon. The icon®efinition V.3. (Adjacent RelationshipsFor any two

in the video database system form an icon hierarchyconsl; andl, in a video query|, is adjacent td, in

Each icon has a graphical notation. A user can operatbe x-axis with distance, denoted by, |, I, if and

the query interface tool to select the icons of a videonly if R(l1)-R(l,)=n. Similarly, 1, is adjacent td,

guery, to place these icons at some locations on tha the y-axis or t-axis with distanaeif and only if

screen to specify their spatial relationships, and t&y(I1)-Ry(l2)=n or Ri(l1)-R(I2)=n, respectively.

attach to each icon a time interval to specify the period

of time during which the icon appears. We define thdefinition V.4. (Appositional RelationshipsFor any

position of an icon by combining the geometricaltwo iconsl, andl, in a video queryl; is appositional

location and the temporal location of the icon. to I, in the x-axis, denoted bl;=l,, if and only if

R(11)=Ry(l,). Similarly, 1, is appositional td, in the

Definition V.1. (Position of an IcopAssume that the y-axis or t-axis if and only iR/(11)=Ry(I2) or Ry(l,)=

resolution of the screen showing the query interfac®(l,), respectively.

tool is Xmax XYmax PiXels. The position of an icon in

a video query is defined as a triple §, t), wherex The adjacent relationship and the appositional

andy are the coordinate values in the x-axis and y-axiselationship form thenormal spatial-temporal rela-

of the central point of the icon, ands the number tionship set{|,, =}.

of the frame at which the icon first appears in the video Having defined adjacent relationships and appo-

query. sitional relationships, we can further define thB-

String and the3D-String notation for representation of

According to this definition, we only recognize the spatial-temporal relationships between the icons of

- 459 -



A.L.P. Chenet al.

a video query.

Definition V.5. (Normal 1D-String$ A normal 1D-
String of lengthk is a string of the fornmal,als...
ak-1l, Where each; is an icon and eact; is in {|,,

=}

Definition V.6. (Normal 3D-Strings A normal 3D-
String of lengthk is a triple ¥, Y, T), whereX, Y, and
T are 1D-Strings of the formhiaql,asls ... ay-qly,
1 Bul 2 Bals' ... Beealids and 1y vl ol g .. Yieeali
respectively. In these strings, eakh, I,', andl,"
is an icon, eachnj, B;, andy is in {|,, =}, and {ly,
|2,:;3, o hd = {0 L, T L L
'}

Example V.1. Assume thati, B, C, andD are four
icons. @A=B|, C|, D, B|; C=A|, D, C|, D=B=A) is a 3D-
String since=, |1, and|, are in{,, =}, and {A, B, C,
D}={ B, C, A, D}={ C, D, B, A}. (A=BJ; C, B|, C|, D,
C|, D=A) is not a 3D-String sinceA, B, C}#{B, C,
D}#{C, D, A}.

referred to in the quenR is the set of the ranks of
icons inl, and Q-type is a number whose value is 0,
1, or 2, denoting the way to translate the spatial-
temporal relationships between the iconslin If
Q-type is 0, all the spatial-temporal relationships be-
tween icons inl are translated into unknown
relationships. If Q-type is 1, the adjacent relationships
between icons in are translated into precedent
relationships. If Q-type is 2, the adjacent relationships
and the appositional relationships between iconk in
are retained.

We will next define extended 1D-Strings and
extended 3D-Strings for representing video queries.

Definition V.10. (Extended 1D-StringsAn extended
1D-String of lengttk is a string of the fornya;l,asl5...

ar-1l, where each; is an icon and eacht; is in {|,,

=, O, ?}L

Definition V.11. (Extended 3D-StringsAn extended
3D-String of lengthk is a triple ¥, Y, T), whereX,
Y, and T are 1D-Strings of the formhiail,asls...

The adjacent relationships and the appositionatr,_qly, 11'B1l2' Bols ... Be-1lk', and 1"yl " yol3'" ...
relationships are a straightforward representation of;_4l)/’, respectively. In these strings, edgh ', and
the spatial-temporal relationships between the icons df'’ is an icon, eaclw;, 5, andy is in {|,, =, O, ?},

a video query. There may exist other representatiorend {I, |5, I3, ..., L[} = {1/, 15, 13, ..., 1K} = {1, 1.,

for them. For example, a user specifies an eagle ican”, ..., I''}.

above a tree icon, but he or she may not know how

far the distance is between them or may not care about A video query can be transformed into an ex-

their relative positions. Therefore, we further definetended 3D-String. The transformation requires two

the precedent relationships and the unknown relatiorsteps. First, a video query is transformed into a normal

ships for these situations. 3D-String according to the ranks of the icons in
the video query as stated in Algorithm V.1 and Algo-

Definition V.7. (Precedent Relationship&or any two
iconsl; andl, in a video query]; is precedent td,
in the x-axis, denoted,O1,, if and only if R,(I1)<
R(l5). Similarly, 1, is precedent td, in the y-axis or
t-axis if and only ifRy(11)<Ry(l2) or Ri(11)<R(l2),
respectively.

Definition V.8. (Unknown Relationships-or any two

rithm V.2. Second, the normal 3D-String is trans-
formed into an extended 3D-String according to the
query type as stated in Algorithm V.3 and Algorithm
V.4,

Algorithm V.1. (Build_1D_String(Q, X)
[* input : a video query @/
/* output : a normal 1D-String/

icons 1, andl,, there is an unknown relationship be-0: begin

tweenl; andl,, denotedl;? I,, if and only ifl; and

1. n<1l

I, appear in the same video query and their relativ@: X< ¢
position is unknown. 3: fori=1to R
4: begin
The adjacent relationships, the appositionab: if do not exist any icon | with ,&)=i
relationships, the percedent relationships, and the ul: n—n+l
known relationships form thextended spatial-tempo- 7: else
ral relationship set{|,, =, O, ?}. 8: begin
9: pick an icon with RI)=i
Definition V.9. (Video Query A video query Q is a 10: if X=¢
triple (I, R, Q-type), wherd is the set of all icons 11: Xe|
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12: else Table 2. Transformation Rules for Normal 1D-Strings

13: Xe X + 4" +I

14 end if Normal  Type 0 Extended Type 1 Extended Type 2 Extended
15: nel 1D-String 1D-String 1D-String 1D-String

16: for each icon 'l with R(I")=i and I'#l Al B A?B AOB A, B

17: XX + “=" +] A=B A?B A=B A=B

18: end

19: end if

20: end 8: ai ~"Qd"

21: end 9: end if

10: end case
Algorithm V.1 constructs a normal 1D-String from 11: X X
a video query in the x-axis. The icons in the videal2: return X
guery are sorted according to thBRjrvalues in the rank. 13: end
If the R, values of two adjacent icons are the same,
an appositional relationship=" is inserted between Algorithm V.4, (Transform_3D_String((X, Y, TR-
them (as shown in line 17). Otherwise, an adjacertype)
relationship {," is inserted (as shown in line 13), where/* input : a normal 3D-String (X, Y, T) and the query
n is the difference between thdé®; values. Similarly, type Q-type*/
this algorithm can be applied in the y-axis or t-axis by* output : an extended 3D-String (XY’, T") */
changing theR, values toR, or R; values, respectively. 0: begin
1: X ~Transform_1D_String(X, Q-type)

Algorithm V.2. (Build_3D_String(Q, (X, Y, T)) 2 Y ~Transform_1D_String(Y, Q-type)

/* input : a video query @/ 3 T ~Transform_1D_String(T, Q-type)

/* output : a normal 3D-String (X, Y, T 4:  return (X, Y, T

0: begin 5: end

1: Build_1D_String(Q, X)

2: Build_1D_String(Q, Y) Algorithm V.4 constructs an extended 3D-String
3:  Build_1D_String(Q, T) from a normal 3D-String by applying Algorithm V.3
4: end in the x-axis, y-axis, and t-axisTable 2summarizes

the transformation of the spatial-temporal relationships
Algorithm V.2 constructs a normal 3D-String from used in Algorithm V.3.
a video query by applying Algorithm V.1 in the x-axis,

y-axis, and t-axis. 4. Video Query Processing
After a normal 3D-String is constructed from a
video query, the next step is to change the spatial- To check whether the symbol objects of a video

temporal relationships in the normal 3D-Stringobject and the spatial and temporal relationships be-

according to the query type specified by the usertween them satisfy a video query, we introduce a data

This can be done by applying the following two structure called the 3D-List and its related algorithms.

algorithms. The formal definition of the 3D-List and the details
of these algorithms can be found in Liu and Chen

Algorithm V.3. (Transform_1D_String(X, Q-type) (1998).

/* input : a normal 1D-String X=jaql,a5l3... a4l

and the query type Q-type*/ VI. Other Approaches to Content-

I* %utput/: an extended 1D-String’X 151150l3... Based Video Data Retrieval
k-1lk

0: begin In addition to the three approaches discussed in
1: begin case the previous sections, other approaches have been
2: case Q-type =0 proposed which are based on various video features.
3: for i=1 to k1
4: ap<“?" 1. Query by Keywords
5: case Q-type=1
6: for i=1 to k1 As in the traditional alphanumeric database,
7: ifai= "I keywords can be used to stored the semantic descrip-
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tions of a video object. This approach was adoptetbr specifying the tracks of content objects in queries.

by Gibbset al. (1993), in which the keywords asso- However, the spatial relationships between content

ciated with video objects are stored as an attribute afbjects were not considered. In Yu and Wolf (1997),

the class VideoValue. Based on the object modethe spatial/temporal semantics of video data were

Oomoto and Tanaka (1993) considered a video objestudied. The Conceptual Spatial Object (CSO), Con-

as a sequence of video frames and represented theptual Temporal Object (CTO), Physical Object

content of a video object as a collection of attri(PO) and a set of predicate logics were defined to

bute/value pairs which are attached to the video objecéxpress queries. Since spatial and temporal semantics
are only captured by CSOs and CTOs, semantics that

2. Query by Algebraic Operators are not defined in CSOs and CTOs cannot be applied
in queries.

Weisset al. (1994, 1995) viewed a video object

as a three-dimensional box and used algebraic operé- Query by Motion Tracks of Symbol Objects

tors such asoncatenation union, and parallel, to

compose video objects into a complex video object. Since video objects have temporal characteristics,

Users can specify temporal/spatial relationships bethe appearance of a symbol forms a three dimensional

tween component video objects of a complex vide@urve, called thenotion trackof the symbol. Using

object as the query predicates of a video query. a graphical query tool, users can draw a 3D curve to
retrieve the multimedia objects which contain symbols

3. Query by Categories with similar motion tracks. For example, we can re-
trieve video objects that contain a spiraling eagle whose

Smoliar and Zhang (1994) modeled the contentsotion track is like the curve specified. Wai and Chen

of video objects in two ways. First, according to their(1997) proposed an approach to approximate matching

topics, video objects are classified into classes, andf the motion tracks of symbol objects.

these classes form a tree structure composed of topical

categories. Users can browse video objects in categ®/||. Conclusion

ries of interest. Second, each video shot is represented

as a movie icon, called a micon, which consists of a In this paper, we have surveyed important ap-

volume of pixels. By employing a horizontal or verticalproaches to content-based multimedia data retrieval.

slice on the micon, the movement of a symbol in thd-irst, for video queries based on cinematic structures,

video object can be traced. a mask matching approach has been proposed to detect
shot changes in an MPEG coded video stream. It takes
4. Query by Intervals advantage of reference ratio variances of macroblocks

between MPEG coded frames to detect shot changes.
The OVID system (Oomoto and Tanaka, 1993)In this approach, the processing time is reduced by
uses an interval as the basic unit of video objects. Adirectly evaluating MPEG coded data. In the im-
interval is associated with an object identifier and glementation, a function is employed to quantize the
set of attribute/value pairs, which describe its meaningsesults into shot change probability values. The results
Users can retrieve video objects based on a descriptidvave been illustrated and discussed. Moreover, a con-
in attribute/value form. They also proposed a videwersion function has been presented for elimination of
query language VideoSQL, in which a new inheritancenisdetection and loss of detection of shot changes.
mechanism based on the interval inclusion relationship ~ Second, techniques for video query by key frame
between video objects is applied to enable users tmave been presented. In this approach, a set of key
specify video queries. frames is automatically extracted from the compressed
video. A query image is given to retrieve the video
5. Query by Spatial/Temporal Relationships of which contains frames similar to the query image. The
Video Objects similarity measurement is based on a comparison of
the histogram of dominant colors. Moreover, the av-
In Little and Ghafoor (1993), a set of temporalerage luminance value of the image is applied as a filter
operators was designed for video queries. Howevetp avoid matching all key frames.
the temporal relationships can be evaluated between Third, we have discussed the 3D-string approach
frame sequences only. Temporal relationships ofor content-based video data retrieval. Based on the
content objects are not considered. Lee and Kuwell known representation of images, the 2D-String,
(1993) considered sixteen primitive types of motionwe have defined the notion of a 3D-String for repre-
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sentation of the spatial and temporal relationship8ird, R. S. (_1977) Two dimensional pattern matchimgformation
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