
Proc. Natl. Sci. Counc. ROC(A)
Vol. 23, No. 4, 1999. pp. 449-465

(Invited Review Paper)

Content-based Video Data Retrieval

ARBEE L. P. CHEN, CHIH-CHIN LIU, AND TONY C. T. KUO

Department of Computer Science
National Tsing Hua University

Hsinchu, Taiwan, R.O.C.

(Received June 4, 1998; Accepted September 21, 1998)

ABSTRACT

Many multimedia applications, such as the World-Wide-Web (WWW), video-on-demand (VOD),
and digital library, require strong support of a video database system. In this paper, we survey various
approaches to content-based video data retrieval. Compared with traditional keyword-based data retrieval,
content-based retrieval provides a flexible and powerful way to retrieve video data. We discuss three
approaches in depth. First, since video segmentation is an elementary task in video index construction,
we discuss an approach to detect shot changes for video segmentation, which is based on the processing
of MPEG compressed video data. Second, since a video object consists of a sequence of frames, the
techniques for retrieving video objects based on the similarity of key frames are addressed. Third, we
discuss a video query model and video query processing techniques based on the symbols in a video object.
The notion of two-dimensional strings is extended to obtain three-dimensional strings (3D-Strings) for
representing the spatial and temporal relationships among the symbols in both a video object and a video
query.

Key Words: video databases, content-based retrieval, video indexing, shot change detection, video query
processing, key frame matching, approximate query processing, motion track, temporal and
spatial relationships, 3D-Strings

− 449 −

I. Introduction

In recent years, progress in the development of
hardware and storage devices has made the use of
digital multimedia, including video, images, graphics,
animation, and audio, very common. Many multimedia
applications, such as the World-Wide-Web (WWW),
video-on-demand (VOD), and digital library, require
strong support from a multimedia database system. In
addition to the storage management for the multimedia
objects, a main service that a multimedia database
system should provide is to enable its users to easily
and efficiently retrieve multimedia objects according
to their content. As multimedia applications becomes
more and more popular, the need for content-based
multimedia data retrieval is getting more important
(Chen et al., 1995; Chiueh, 1994; Chou et al., 1996;
Dimitrova and Golshani, 1995; Gudivada and Raghavan,
1995; Jagadish, 1991; Liu and Chen, 1997, 1999; Myron
et al., 1995; Smoliar and Zhang, 1994; Wai and
Chen, 1997; Weiss et al., 1994; Yoshitaka, 1994). To
provide the ability of content-based multimedia data
retrieval, a multimedia query language or query inter-
face should be developed by means of which users can

specify their queries. Furthermore, various techniques
should be developed to efficiently process multimedia
queries.

Most of the previous research on modeling and
querying multimedia objects has focused on image
databases (Chang et al., 1988; Chiueh, 1994; Jagadish,
1991; Liu and Chen, 1996a; Myron et al., 1995; Petrakis
and Orphanoudakis, 1993). Unlike the QBIC project
(Myron et al., 1995), one can retrieve image objects
according to their color, texture, or shape characteristics.
Another approach to querying image databases is to
construct an iconic index for the image objects (Chang
et al., 1987, 1988); image queries can then be posed
against the symbols and their spatial relationships.
Based on the R-tree data structure, a query language
called PSQL was proposed (Rousspoulos et al., 1988).
Although PSQL is suitable for geographical data, such
as maps, it is not suitable for general images, such as
photographs and medical images.

Audio objects can be classified into two groups,
music and sound objects, according to whether they
have associated staffs. For audio objects, Wold et al.
(1996) proposed an approach to retrieve them based
on their content. In their approach, an N-vector is

A.L.P. Chen et al.

− 450 −

constructed according to the acoustical features of an
audio object. These acoustical features include loudness,
pitch, brightness, bandwidth, and harmonicity, which
can be automatically computed from the raw data. The
N-vector of acoustical features is then used to classify
sounds for similar searching. However, the acoustical
features are at a level too low for human beings. The
most straightforward way for a naive user to query
music databases is to hum a piece of music as the query
example to retrieve similar music objects. This ap-
proach was adopted in Bakhmutova et al. (1997),
Balaban (1996), Chen and Chen (1998), and Ghias et
al. (1995). Ghias et al. (1995) proposed an approach
to transform a music query example into a string which
consists of three kinds of symbols (“U”, “D”, and “S”,
which represent a note is higher, lower, or the same
as its previous note, respectively). The problem of
music query processing is then transformed into that
of approximate string matching. However, using only
three kinds of symbols is too rough to represent the
melody of a music object. Moreover, the proposed
string matching algorithm does not take music char-
acteristics into consideration. To develop a content-
based music database system, we have started a project
called Muse (Chou et al., 1996; Chen and Chen, 1998;
Liu and Chen, 1996b; Liu et al., 1999). In this project,
we have proposed three different methods for content-
based music data retrieval. In Liu et al. (1999), we
treated the rhythm, melody, and chords of a music
object as a music feature string and developed a data
structure called 1D-List to efficiently perform approxi-
mate string matching. Similarity measures in the
approximate string matching algorithm are designed
based on the music theory. In Chou et al. (1996), we
considered music objects and music queries as se-
quences of chords. An index structure was developed
to provide efficient partial matching ability. In Chen
and Chen (1998), we propose an approach to retrieving
music objects by means of rhythm.

Compared with other media types, such as text,
image, and audio, video contains richer information
(Gibbs et al., 1993; Tonomura and Abe, 1994). However,
this richness results in the lack of a generally accepted
representation of video content. As many features can
be used to represent the content of a video object, many
approaches to content-based video data retrieval
have been proposed recently. In this paper, we provide
a survey of recent research results on content-based
video data retrieval and address three important
techniques for video indexing and video query
processing.

The rest of this paper is organized as follows. In
Section II, we summarize features which can be used
to represent video objects. The indexing techniques

which support video data retrieval based on the cin-
ematic structure of video objects are explained in
Section III. A method for key frame matching is
discussed in Section IV. The model and query pro-
cessing techniques for video queries based on the spatial/
temporal relationships of symbols in video objects are
discussed in Section V. Finally, Section VI concludes
this paper and provides some challenging research
goals.

II. Features for Content-based Video
Indexing

In this section, we analyse features which can
represent the content of video objects.

(1) Image characteristics of key frames: A video
object consists of a sequence of image frames.
We can use some representative frames (key
frames) as an abstract image of a video object.
Thus, image characteristics, such as color, texture,
shape, and sketch, can be specified as query
conditions to retrieve video objects which contain
image frames which have similar characteristic
measures (Myron et al., 1995).

(2) Cinematic structure: the raw data of a video
object forms a stream of frames. However, a
video object intrinsically has a hierarchical
structure. The basic unit in the hierarchical
structure is a shot (Smoliar and Zhang, 1994).
Shots in the same place form a scene. Several
scenes form a sequence (Allen, 1983). In general,
a video object consists of a set of sequences. We
can pose a video query against the structure of
video objects, for example, to retrieve all the
shots in the second scene of the first sequence
of a video object.

(3) Symbol containment: a symbol is an object ap-
pearing in a multimedia object (Kuo et al., 1996;
Liu and Chen, 1999). Assuming that the symbols
contained in a multimedia object can be iden-
tified by means of suitable pattern recognition
techniques or manually, we can retrieve multi-
media objects containing some user-specified
symbols.

(4) Symbol motion tracks: In a video or animation
object, the appearance of a symbol forms a three
dimensional curve (3D curve). We call this
curve the motion track of the symbol. Using a
graphical query tool, users can draw a 3D curve
to retrieve multimedia objects which contain
symbols with similar motion tracks (Chen et al.,
1995).

(5) Spatial and temporal relationships between
symbols: there may exist spatial or temporal

Content-based Video Data Retrieval

− 451 −

relationships between the symbols in a multime-
dia object, and we can pose a multimedia query
against these relationships. For instance, we can
retrieve video objects which contain a frame
with an eagle flying above a tree and a later frame
with a lake.

III. Query by Cinematic Structure

For content-based retrieval, retrievals based on
the image features of video frames are more efficient
and practical. By measuring the similarities among
video frames, a hierarchical cinematic structure
(Davenport et al., 1991), including the shots, scenes,
episodes of a video, can be constructed as an index.
Users can browse the hierarchical cinematic structure
to retrieve cinematic units of interest. For example,
users can specify the following query to play the first
shot of the third scene of the second episode of the
current video object (Liu and Chen, 1997):

SELECT S3.play()

FROM current Video V, V.Episode E1, E1.Scene S2, S2.Shot S3

WHERE E1.EpNum = 2

AND S2.ScNum = 3

AND S3.ShNum = 1

A shot is a sequence of frames which represents
continuous action in time and space. The contents of
the frames belonging to a shot are similar. Therefore,
shot change detection can be performed through simi-
larity measurement of continuous frames. Most of the
previous works on shot change detection were based
on the processing of uncompressed video data. Color
histogram comparison and pairwise pixel comparison
are two straightforward approaches (Tonomura and
Abe, 1990; Nagasaka and Tanaka, 1991; Chua and
Ruan, 1995) to similarity measurement. The color
histogram approach summaries the color distribution
of a frame and computes the differences between it and
the color distributions of its adjacent frames. When
the difference exceeds a predefined threshold, a shot
change is detected. Without considering the spatial
distribution of colors, two different frames with the
same color histogram will be treated as being very
similar. In the pairwise pixel comparison approach,
the values of the pixels are compared pixel by pixel.
The sum of the differences of the values is computed.
A shot change is detected when the sum exceeds a
predefined threshold. The pairwise pixel comparison
approach can easily lead to misdetections since it is
very motion sensitive.

To improve the quality of detection, misdetections
and the loss of detection should be avoided. A

misdetection may occur due to a quick variance of
video contents, such as the effect caused by an elec-
tronic camera flash. A loss of detection may occur due
to the similarity of video contents in consecutive shots.
Otsuji and Tonomura (1993) and Ueda et al. (1991)
considered the case of large differences in the contents
of continuous frames due to fast motion (but not shot
change). Using a filter for detecting such situations,
misdetection in fast motion video frames can be reduced.
Shot change detection in special applications (Brown,
1995; Philips and Wolf, 1996; Swanberg et al.,
1993; Zhang et al., 1993), such as news programs, can
achieve better results. This is because the detecting
algorithm can focus on the characteristics of the
applications, and knowledge can be provided to assist
detection.

Adjeroh and Lee (1997) presented a method to
dynamically adjust the threshold for detecting shot
changes. Moreover, a window size (in terms of the
number of frames) was defined to avoid falsely detect-
ing more then one shot change in a short period of time.
All these detection methods for uncompressed video
data suffer from the following drawbacks: (1) process-
ing is time consuming; (2) since video data are often
stored in a compressed format, such as MPEG (Gall,
1991), video data should be decompressed in advance
before processing.

Lin (1996), Chang (1997), Arman et al. (1993),
and Yeung et al. (1995) proposed shot change detection
algorithms based on compressed data. Arman et al.
(1993) proposed an approach that computes the Dis-
crete Cosine Transform (DCT) coefficients for each
frame. These DCT coefficients of each frame are stored
as a set of vectors. The inner product of the vectors
of two continuous frames is computed to measure their
similarity. When the similarity degree falls in a range
where a shot change cannot be determined, the color
histogram comparison approach has to be performed.
In MPEG coded video data, a frame can be referenced
by or can reference to other frames. The reference
ratios can be computed for similarity measurement
among frames. In Chang and Lee (1995), and Meng
et al. (1995), both references and DCT coefficients
were used to detect shot changes. Shot changes with
the effect of dissolve were considered.

Kuo and Chen (1996) extended a method we pro-
posed before to detect shot changes for MPEG coded
video data. This approach analyzes references among
MPEG coded frames. It is more efficient than that of
Chang and Lee (1995) and Meng et al. (1995) since
only the references of frames have to be evaluated. A
function is used to quantize the evaluation results to
shot change probabilities such that a shot change can
be easily recognized.

A.L.P. Chen et al.

− 452 −

1. MPEG Compressed Data Analysis

MPEG is a standard for video compression which
achieves a high compression rate. It is popular for use
in many applications. Video data are often stored in
MPEG format. Shot change detection algorithms which
perform image processing on raw video data are not
suitable for MPEG coded video. Additional processing
for decompressing compressed video into raw video
has to be performed first. Therefore, it is more efficient
to directly detect shot changes in MPEG compressed
video. In order to improve the compression rate, in
MPEG uses motion compensation technology to reduce
the codes of similar image patterns among adjacent
frames. Therefore, similarity matching is performed
in the process of encoding. In the following, we will
introduce the MPEG data format and discuss the in-
formation which can be used for shot change detection.

A. MPEG Data Format

In this section, we will introduce the information
needed for shot change detection in MPEG coded data.
The MPEG coding algorithm uses DCT to compress
raw video data. Additionally, it uses block-based mo-
tion compensation to reduce temporal redundancy. By
means of motion compensation, codes of similar blocks
can be reduced by referencing to the image contents
of adjacent frames. The more blocks a frame references,
the more similar these two frames are. Therefore, by
analyzing the references among coded frames, similar-
ity can be determined.

In MPEG coding, a frame is divided into
marcoblocks. Each macroblock is a 16 by 16 image
as a basic coding unit. A macroblock can be coded
by DCT or references to its adjacent frames when it
matches the similar image patterns of these frames. A
macroblock coded by DCT is called an intra-coded
macroblock. Macroblocks referencing to similar image
patterns are called forward-prediction coded, back-
ward-prediction coded or bidirectional-prediction
coded macroblocks when they reference to the image
patterns of the preceding frame, subsequent frame, or
both preceding and subsequent frames, respectively. A
reference to the preceding frame is called a forward
reference, and on to the subsequent frame is a backward
reference.

By means of referencing patterns of macroblocks,
three types of frames, called the I frame, P frame and
B frame, can be defined. All the macroblocks in an
I frame must be intra-coded macroblocks. That is, the
I frame is independently coded. It can be decompressed
without referencing to other frames. Macroblocks of
the P frame may have forward references to its pre-

ceding I or P frame. That is, the macroblock is a
forward-prediction coded macroblock when a similar
image pattern is found in the preceding I or P frame.
The macroblock is intra-coded when a similar image
pattern can not be found in the preceding I or P frame.
A B frame may have references to its adjacent I or P
frames. Bidirectional references are allowed. The
macroblock in a B frame can be a bidirectional-pre-
diction coded, forward-prediction coded, or backward-
prediction coded macroblock.

In MPEG coded video, the number and sequence
of I, P, and B frames are pre-determined. In general,
there may be a number of P and B frames between two
I frames, and a number of B frames between two P
frames or between an I and a P frame. An example
is shown in Fig. 1 to illustrate the structure of MPEG
coded frames. The ratio of the numbers of I, P, and
B frames (called the IPB-ratio) is 1:2:6. An I frame
is followed by two P frames and six B frames in a
sequence.

B. References among Video Frames

For P frames and B frames, macroblocks may
reference to adjacent frames. We can compute the
number of marcoblocks for each type of reference to
measure the similarity with the adjacent frames. We
define two types of reference ratios (RRs) as follows:

(1)Forward reference ratio

(FRR)=Rf/N,

where Rf is the number of the forward-prediction
coded macroblocks of a frame and N is the number
of total macroblocks of the frame.

(2)Backward reference ratio

(BRR)=Rb/N,

where Rb is the number of the backward-predic-
tion coded macroblocks of a frame and N is the
number of total macroblocks of the frame.

Fig. 1. Example of frame references.

Content-based Video Data Retrieval

− 453 −

The range of both FRR and BRR is between 0 and
1. A P frame has an FRR. A B frame has both an FRR
and a BRR. When the FRR is high, this indicates that
the frame is similar to its preceding frame. When the
BRR is high, this indicates that the frame is similar
to its subsequent frame. The RR is regarded as high
when it exceeds a given threshold. An I frame has no
FRR or BRR. Therefore, to measure the similarity
between an I frame and its adjacent frames, we have
to evaluate the FRR or BRR of these adjacent frames.

In a video sequence, the contents of continuous
frames are similar when the shot does not change.
Therefore, the reference ratios of these frames are high.
When a shot change occurs, the contents of the frames
are not similar to those of the preceding frames. The
reference ratios are then low.

In the next section, we will propose an approach
to detecting shot changes which evaluates the reference
ratios of MPEG coded frames. Since only the infor-
mation of the reference ratios of frames has to be
computed, there is no need to decompress each coded
frame. A large amount of time can, thus, be saved.
For example, a video sequence contains 10,000 con-
tinuous frames. Each frame is a 256 by 256 image.
That is, a frame contains 256 macroblocks. To compute
the reference ratio of a frame, 256 add operations must
be performed. This approach is more efficient than
color histogram based approaches and the approach
which computes the DCT coefficients of frames.

2. Shot Change Detection

A. Shot Change Occurrence Analysis

A shot change often causes the contents to be
different from those of the previous shot. Therefore,
frames of the previous shot may have low BRRs to the
next shot. On the other hand, frames of the next shot

may have low FRRs to the previous shot, as shown in
Fig. 2.

A shot change may occur in any type of frame.
In the following, we will consider situations in which
shot changes occur at I frames, P frames and B frames,
respectively.

(1) A shot change occurs in an I frame: Because I
frames are encoded independently of other
frames, they do not have forward and backward
references. What we need to take into account
is the B frames between this I frame and the
preceding I or P frames. These B frames use
this I frame as a backward reference for encoding.
They cannot easily find similar image patterns
from this I frame, so their BRRs must be low.
We do not consider the FRRs of these B frames
since they are not relevant to this I frame. The
B frames between this I frame and the subse-
quent P frame need not be considered since they
are not relevant to shot change detection.

(2) A shot change occurs at a P frame: The B frames
between this P frame and the preceding I or P
frame behave in the same way as previously
described. The difference in this case is that P
frames have forward references. Since this P
frame is the shot change frame, it cannot easily
find similar patterns from the preceding I or P
frame. The forward reference will be low.

(3) A shot change occurs at a B frame: This B frame
itself will have a low FRR. If there exist B frames
between this B frame and the preceding I or P
frame, their BRRs must be low. If there exist
B frames between this B frame and the next I
or P frame, their FRRs must be low, too.
Furthermore, if the first non-B frame in the fol-
lowing sequence is a P frame, the FRR of this
P frame must be low.

Consider the MPEG video sequence shown in Fig.
3. If a shot change occurs at I frame 13, the B frames
11 and 12 will have low BRRs. If a shot change occurs
in P frame 10, the BRRs of B frames 8 and 9 will be
low, and so will the FRR of P frame 10. The situation
is different when a shot change occurs at B frame 5
or B frame 6. If B frame 5 is the shot change frame,
P frame 7 and B frames 5 and 6 will have low FRRs.
If a shot change occurs at B frame 6, the BRR of B

Fig. 2. The varieties of reference ratios when a shot change occurs.

Fig. 3. An example video sequence.

A.L.P. Chen et al.

− 454 −

frame 5 will be low, and so will the FRRs of P frame
7 and B frame 6.

B. The Mask Matching Approach

From the above analysis, to detect whether a frame
has a shot change, the FRRs and/or BRRs of this frame
and its adjacent frames have to be examined. In this
section, we will present a mask matching approach to
detection of possible shot changes. This approach
examines MPEG coded video frame by frame. For
each video, a set of masks is defined. The RRs of the
frames specified in the masks are evaluated. Different
types of frames have to be matched with different
masks. When a frame is matched with the mask, it is
detected as a shot change frame. Since there are I, P,
and B frames, the types of masks are denoted as I_frame
masks, P_frame masks, and B_frame masks, respect-
ively.

A mask denotes the qualification for detecting
shot changes in frames. It consists of two parts. One
is the type of this mask. The other is a sequence of
mask frames which have to be examined. A mask frame
M i can be denoted as follows:

M i=FR,

where F∈{I, P, B}, R∈{f, b}. F denotes the frame type
of this mask, and R denotes the RR, which should be
low (f for FRR and b for BRR). High RRs are not used
to detect the occurrences of shot changes.

A mask M can be denoted as

M={ mask_type; (M1, M2, .., Mn)},

where mask_type∈{I, P, B}, M i are mask frames.
To denote a sequence of frames, the mask frame

beginning with an ‘@’ indicates the current frame. For
example, as shown in Fig. 4, there are four masks for
the video with the IPB-ratio 1:2:6. Mask M1 is for the
I frame and M2 is for the P frame. Because of the IPB-
ratio 1:2:6, the B frame may encounter two different
situations: in one, it is preceded by an I or a P frame
and followed by a B frame, and in the other, it is

preceded by a B frame and followed by an I or a P frame.
Therefore, there are two masks, M3 and M4, for the B
frame. M3 indicates that (1) the current B frame should
have a low FRR, (2) its subsequent B frame should have
a low BRR, and (3) its subsequent P frame should have
a low FRR. If the subsequent frame is an I frame, it
can be skipped.

We will use the previous example shown in Fig.
3 to demonstrate this kind of checking. To check I
frame 13, the M1 mask is applied. By checking the
mask frames of M1, the preceding two B frames should
have low BRRs when I frame 13 has a shot change.
That is, B frame 11 and 12 have low BRRs.

In mask matching, to determine whether a frame
has a low reference ratio, the reference ratio has to be
compared with a predefined threshold. Different types
of videos may have different thresholds.

C. Implementation

Some experiments were done to verify the validity
of the mask matching approach. In the experiments, we
designed a function to transform the results of mask
matching into shot change probabilities. The probabil-
ity was low when a frame was similar to its adjacent
frames. This function will be introduced in the follow-
ing section.

Our approach takes advantage of the concept of
mask matching to detect whether a frame has a shot
change or not. To implement this concept, the results
of mask matching are quantized to a value which
indicates the shot change probability. The shot change
probability function P is as follows:

P = 1 –

RRf 1
2 + RRf 2

2 + + RRf n

2

RRf 1
+ RRf 2

+ + RRf n

, (1)

where f1, f2, ..., fn ∈ the mask frames of the current
frame and RRfi is the corresponding RR of mask frame
fi. If ∀RRfi=0, 1≤i≤n, then P is set to 1:

M1={I; (Bb, Bb, @I)};

M2={P; (Bb, Bb, @Pf)};

M3={B; (@Bf, Bf , Pf) or (@Bf, Bf, I)};

M4={B; (Bb, @Bf, Pf) or (Bb, @Bf, I)};

Masks of the video with IPB-ratio 1:2:6.

The shot change probability is between 0 and 1.
The larger the value is, the more possible it is that a

Fig. 4. An example of computing the shot change probability.

Content-based Video Data Retrieval

− 455 −

shot change will occur at the frame. The second term
in Eq. (1) is the weighted sum of the corresponding
RRs of mask frames. Based on the weighted sum, if
one of the RRs is much larger than the others, then the
result of the weighted sum will approach the larger
RR. Therefore, the shot change probability will be low
if there exists a mask frame with a high RR. For
example, consider the video stream shown in Fig. 4.
The mask used to detect P frame 6 was {P; (Bb, Bb,
@Pf)}.

Suppose the BRR of B frame 4, BRR of B frame
5 and FRR of P frame 6 are all 0.2. The probability
that a shot change will occur at P frame 6 is computed
as (1−0.2)=0.8. This indicates that P frame 6 is very
probably a shot change frame.

We will use Fig. 5 to illustrate another example.
Suppose the BRR of B frame 4 is 0.8, the BRR of B
frame 5 is 0.2 and the FRR of P frame 6 is 0.2. The
shot change probability can be computed as (1−0.6)=
0.4 by applying (2.1). The probabil i ty that a
shot change will occur at P frame 6 is low in this
case.

After all the shot change probabil it ies are
computed, a threshold is defined to get the final result.
As long as the shot change probability of a frame is
larger than the threshold, it is regarded as a shot change
frame.

IV. Query by Means of Key Frame
Matching

This section will discuss techniques for the re-
trieval of videos based on key frames. In this approach,
some representative key frames are extracted as an
index. Users can query the videos using an example
image, and the system compares the query image and
the key frames to find possible results. Parsing the
video into shots (i.e., shot change detection) is the first
step in constructing such indexes for querying video
data. Similarity measurement is based on comparison
of the histograms of dominant colors. Moreover, the
average luminance value of the image is applied as a
filter to avoid matching on all key frames. Experiments
have been performed to show how this approach is
used.

1. Approach Overview

This subsection will present a system overview
of our approach. It contains three agents. They are
video indexing agent, query interface agent, and query
processing agent, as shown in Fig. 5.

(1) The video indexing agent constructs key frames
for incoming videos. A key frame is a dominant
frame of a shot, where a shot presents a sequence
of continuous video frames. The image contents
of the key frames are stored for similarity
matching when a query is posed. When the
image contents of the key frames are stored, the
average luminance of each key frame is com-
puted and stored as an index of a filter.

(2) The query interface agent enables users to specify
queries and invokes the query processing agent
for query results. A query is simply specified
by giving a sample image (called a query image).
The threshold of the similarity degree can be
adjusted for different matching criteria. Video
clips containing the key frames which are similar
to the query image are shown as query results.

(3) The query processing agent analyzes the query
image and compares it with the key frames for
most similar matching. It can be divided into
two steps. First, we compute the average lumi-
nance of the query image, and key frames with
similar average luminance are chosen for ex-
haustive matching. It avoids exhaustive match-
ing on all key frames. Second, matching is
performed between query images and the se-
lected key frames. The matching algorithm will
be presented in the next section. The query
results are returned to the user via the query
interface agent.

2. Similarity Matching of Key Frames

Similarity matching is based on comparison of the
color histograms of dominant colors of different image
blocks. The color information is first analyzed. The
steps are shown in Fig. 6.

For an image, we count the number of pixels of
each color. The top n colors with the maximal number
of pixels are selected as dominant colors. Furthermore,
the image is divided into several square subimages.
The color histogram of the dominant colors is then

Fig. 5. System overview of the video retrieval system.

Fig. 6. Steps for color information analysis.

A.L.P. Chen et al.

− 456 −

computed for each image block. It considers the color
distribution feature in the color histogram computation.
In the following, we will present the algorithm for
comparison between a query image and key frames.

We will first define a set of parameters that will
be used in our presentation.

(1)Cd: the number of dominant colors. The default
value is 64.

(2)n: the block size of a subimage. Each subimage
is an n×n image block. The default value
is 16.

(3)R: the range of colors that will be treated as
identical. For example, suppose R=128 in the
256 gray scale domain; the gray scales of
0~127 are treated as the same color, and so
are the scales 128~255. When R is specified,
the domain of colors is reduced.

These parameters can be adjusted for different
applications. Next, we will present the algorithm for
similarity matching between two images.

(1) Input the query image and a key frame.
(2) Transform the colors of the two images into the

new domain based on R.
(3) Compute the global color histogram to select the

top Cd dominant colors for the query image.
(4) Divide each image, including the query image

and key frame, into a set of subimages, where
each subimage is an n×n image block.

(5) Compute the similarity for two corresponding
subimages:
 (i) Let sim be the similarity degree of the two

subimages,

0<=sim<=1.

Let diff be the summation of the differences
of the numbers of pixels for each dominant
color of the two subimages.
Let P1(i) be the number of pixels for domi-
nant color Di of subimage 1, P2(i) be the

number of pixels for dominant color Di of
subimage 2.

(ii) diff=0
For i=1 to Cd

diff=diff+|P1(i)−P2(i)|

sim=1−diff/(n×n×2).

Note: When the number of pixels of each domi-
nant color does not vary, diff is equal to
0, and sim is equal to 1.

The cost of similarity matching between two
images is high since the pixel values have to be com-
puted online. To reduce the processing time, exhaus-
tive matching between all key frames and the query
image should be avoided.

We provide an average luminance value (ALV)
filter to prune key frames which are not query results.
It is based on a comparison of the ALV of the images
to be pruned. The ALV is the average of the luminance
of all the pixels in the image. Therefore, the range of
the ALV of an image is 0~255. For all key frames, the
ALVs can be stored in advance. When processing a
query, the ALV of the query image is computed. Key
frames which have similar ALVs are the possible results
of the query. Additional similarity matching has to be
performed between these key frames and the query
image. On the other hand, key frames which do not
have similar ALVs are pruned. A threshold can be
defined to determine whether two ALVs are similar or
not.

3. Experiment Results

The experiments were designed to demonstrate
how our approach. The experiments can be divided
into two parts. First, we performed the similarity
matching algorithm on 100 images, which were clas-
sified into five classes. The results show that images

Fig. 7. Similarity matching between an astronomy image and other images.

Content-based Video Data Retrieval

− 457 −

which belonged to the same class may have had a high
degree of similarity. Second, we chose three videos and
randomly queried the image contents of each video.
The results show that the queried images could be
matched to the key frames which belonged to the same
shot of the query images.

We chose 100 images in five classes as our
experimental images. The five classes were animal,
painting, astronomy, person, and plant. Each class had
20 images. We randomly selected one image from each
class and compared it with all the images. Figures 7
and 8 show the results of the classes astronomy and
painting. The left most one is the query image. The
other images ranked as 1~5 in similarity. We found
that similar images usually belonged to the same class.

The above experiments showed good results for
matching of similar types of images.

V. Query by Spatial and Temporal
Relationships among Symbols

Chang et al. (1987, 1988) proposed the concept
of a 2D-string structure for representing the contents
of images. In this approach, each object in an image
is represented by a symbol, and the orders of all the
symbols along the x-axis and y-axis are stored in two
strings. The notion of 2D-string structure can be
extended with some modifications to take into account
the characteristics of video, and the 3D-String structure
for representation a video query has been defined (Liu
and Chen, 1998). The problem of video query process-
ing is then transformed into a problem of three-dimen-
sional pattern matching. Many string matching algo-
rithms (Aho and Corasick, 1979; Baeza-Yates and
Gonnet, 1992; Boyer and Moore, 1977) and pattern
matching algorithms (Baker, 1978; Bird, 1977; Fan and
Su, 1993) have been proposed in the past. However,
they are not suitable for 3D-Strings since the relation-
ships between the symbols in a 3D-String are much

more complex than those between symbols in a string
or pattern.

In this section, a video query model based on the
content of video and iconic indexing is discussed. We
extend the notion of two-dimensional strings to three-
dimensional strings (3D-Strings) to represent the spa-
tial and temporal relationships among the symbols in
both a video and a video query. The problem of video
query processing is then transformed into a problem
of three-dimensional pattern matching. We have de-
veloped an efficient three-dimensional pattern match-
ing mechanism. To process a video query, we first
construct a 3D-String to represent the spatial and tem-
poral relationships between symbols in the video query.
Then, the symbol objects of a video object to be evaluated
in the video database are retrieved and organized as
a 3D-List according to the 3D-String. The 3D-List is
a compact graph representation of the spatial-temporal
relationships between symbol objects in a video object.
Then, the 3D-List refinement algorithm is applied to
the 3D-List to reduce the number of symbol objects in
the 3D-List. Finally, the refined 3D-List is traversed
to determine whether the video object is an answer to
the video query.

1. Video Index Tool and Video Index Struc-
tures for Symbol Objects

The video index tool shown in Fig. 9 is a graphical
interface for building a video index of video objects.
It consists of a video index window and a video playout
window. The video index window consists of a set of
VCR buttons, an icon list, and an index display area.
It allows users to interactively select interesting sym-
bol objects of a video object and build corresponding
indices for these symbol objects. First, the video object
to be indexed is selected and played. When an inter-
esting symbol object appears, the user presses the VCR
button to pause the playout, chooses an icon represent-

Fig. 8. Similarity matching between a painting image and other images.

A.L.P. Chen et al.

− 458 −

ing the symbol object from the icon list and puts it at
the position where the symbol object appears in the
video playout window. The corresponding symbol
object will appear in the index display window. This
step is repeated for interesting symbol object in this
video frame. The object identifiers of the video object,
the icon that the symbol object belongs to, and the
symbol object itself, the x, y coordinate values of the
central point of the symbol object, and the number of
the frame at which the symbol object first appears in
the video object are stored in a table called a video index
table. Table 1 shows an example of a video index table.
The video object V0001 contains ten symbol objects.
These symbol objects are associated with three icons.

2. A Motivative Example

Before we formally describe the concept of 3D-
Strings for representing video queries and the data
structure 3D-List for processing video queries, in this
subsection, we will use an example to illustrate our
approach.

Assume a video query Q contains three icons, A,
B, and C. Icons A and B are at the same place in the
x-axis, and icon C is on the right side of icon B (and
icon A). This information can be denoted as the string
A≡B➩C. This notation can also be used to represent
the relative positions between symbol objects in a video
object. For example, assume that a video object V has
16 symbol objects, a1, a2, a3, b1, b2, c1, c2, c3, d1, d2,
d3, e1, e2, f1, f2, and f3 (where a1, a2, and a3 belong
to icon A, b1 and b2 to icon B, etc.), and that their
relative positions are denoted as a1≡e2≡b2➩f1≡d1≡f2➩a3

≡b1≡a2≡c1≡d2➩e1➩c2≡d3≡c3➩f3. We say that the video
object V is an answer to the video query Q if V contains
three symbol objects, ai, bj, and ck, such that ai≡bj➩ck.

To decide whether V is an answer to Q, a straight-

forward method is to match the two associated strings.
However, due to the complexity of the relationships
between the symbol objects, this method is very
inefficient. For example, to find whether a1 and b2

match A≡B, we have to check ➩f1≡d1≡f2➩a3≡b1≡a2≡c1≡
d2➩e1➩c2≡d3≡c3➩f3 to find the symbol object that
matchs ➩C.

Instead of directly matching the two strings, we
use the string associated with a video query as a tem-
plate and use a data structure to see whether the symbol
objects of a video object can fit the template. Only
those symbol objects of a video object that are asso-
ciated with the icons of a video query need to be
retrieved and checked. In this example, only a1, a2, a3,
b1, b2, c1, c2, and c3 are retrieved, and three sets, {a1,
a2, a3}, { b1, b2}, and {c1, c2, c3}, are formed. The next
step is to check whether there exist three symbol objects
selected from {a1, a2, a3}, { b1, b2}, and {c1, c2, c3},
respectively, that match A≡B➩C. Instead of checking
3×2×3=18 combinations of these symbol objects, we
have developed a data structure to efficiently perform
the matching process. First those symbol objects
associated with the same icon are arranged according
to their sequence in the string as shown in Fig. 10(a).
Then a3 and a2 are linked since they are at the same
position, which implies that they can be treated as a
symbol object for checking. Similarly, c2 and c3 are
linked. The number of combinations is reduced to
2×2×2=8. Checking the relative position between a1

and b2, we find they match A≡B. a1 and b2 are, thus,
linked as shown in Fig. 10(b). a1 and b2 need not be
checked since b2 and b1 are not at the same position
(they are not linked). Similarly, a3 and b2 need not
be checked since a3 and a1 are not at the same position.
Also, a2 and b2 need not be checked since a2 and a3

are not at the same position. The remaining checking
process is as shown in Fig. 10(c)-(f). Totally, only six
checkings are needed.

The discussion above only considers the relation-Fig. 9. The video index tool.

Table 1. An Example Video Index Table

video_oid icon_oid symbol_oid x y frame

V0001 E S0001 0 2 4
V0001 E S0002 2 0 15
V0001 E S0003 1 1 20
V0001 T S0004 0 1 1
V0001 T S0005 0 2 25
V0001 T S0006 2 0 40
V0001 H S0007 2 1 1
V0001 H S0008 1 1 31
V0001 H S0009 2 2 22
V0001 H S0010 0 2 40

Content-based Video Data Retrieval

− 459 −

ships between symbol objects in the x-axis. When we
evaluate a video object against a video query, the
relationships between the symbol objects in the x-axis,
y-axis, and time-axis should all be checked. An ef-
ficient algorithm should be developed to combine the
one-dimensional results into the three-dimensional
results. This is another important problem we have to
deal with when we process a video query.

3. The Representation of Video Queries

In this subsection, we will describe the video
query model and introduce the notion of 3D-Strings,
which are used to represent the spatial and temporal
relationships between the icons in a video query.

Symbol objects which represent the same kind of
real world entities are grouped into an icon. The icons
in the video database system form an icon hierarchy.
Each icon has a graphical notation. A user can operate
the query interface tool to select the icons of a video
query, to place these icons at some locations on the
screen to specify their spatial relationships, and to
attach to each icon a time interval to specify the period
of time during which the icon appears. We define the
position of an icon by combining the geometrical
location and the temporal location of the icon.

Definition V.1. (Position of an Icon) Assume that the
resolution of the screen showing the query interface
tool is Xmax ×Ymax pixels. The position of an icon in
a video query is defined as a triple (x, y, t), where x
and y are the coordinate values in the x-axis and y-axis
of the central point of the icon, and t is the number
of the frame at which the icon first appears in the video
query.

According to this definition, we only recognize

the central point of the icon. Information about the
shape or size of the icon is omitted to reduce the
complexity of query processing. We will relax this
limitation in the future.

Because the resolution of the screen showing the
query interface tool and the resolution (size) of each
video object in the video database can be different, a
uniform resolution model should be provided as a basis
for performing similarity comparison between video
queries and the index of video objects. Thus, the screen
area is divided into Xrank×Yrank grids of equal size,
where Xrank and Yrank are user specified. This concept
can be extended to the time dimension. The total time
intervals of a video query and each video object are
both divided into Trank time intervals. The position of
an icon in the uniform resolution model, also called
the rank of the icon, can be defined as follows.

Definition V.2. (Rank of an Icon) Assume that the
position of an Icon I is (x, y, t), that the screen resolution
of the query interface tool is Xmax×Ymax pixels and is
divided into Xrank×Yrank grids, and that the total time
interval of a video query is set to Tmax frames and is
divided into Trank time intervals. The rank of the icon
I is defined as the triple (Rx(I), Ry(I), Rt(I)), where
Rx(I)=x×Xrank/Xmax, Ry(I)=y×Yrank/Ymax, and Rt(I)=
t×Trank/Tmax.

For any two icons in a video query, basically,
there are two kinds of spatial/temporal relationships
between them, i.e., adjacent relationships and appo-
sitional relationships as defined in the following.

Definition V.3. (Adjacent Relationships) For any two
icons I1 and I2 in a video query, I1 is adjacent to I2 in
the x-axis with distance n, denoted by I1 |n I2 if and
only if Rx(I1)−Rx(I2)=n. Similarly, I1 is adjacent to I2

in the y-axis or t-axis with distance n if and only if
Ry(I1)−Ry(I2)=n or Rt(I1)−Rt(I2)=n, respectively.

Definition V.4. (Appositional Relationships) For any
two icons I1 and I2 in a video query, I1 is appositional
to I2 in the x-axis, denoted by I1≡I2, if and only if
Rx(I1)=Rx(I2). Similarly, I1 is appositional to I2 in the
y-axis or t-axis if and only if Ry(I1)=Ry(I2) or Rt(I1)=
Rt(I2), respectively.

The adjacent relationship and the appositional
relationship form the normal spatial-temporal rela-
tionship set { |n, ≡}.

Having defined adjacent relationships and appo-
sitional relationships, we can further define the 1D-
String and the 3D-String notation for representation of
the spatial-temporal relationships between the icons of

Fig. 10. A motivative example for video query processing.

A.L.P. Chen et al.

− 460 −

a video query.

Definition V.5. (Normal 1D-Strings) A normal 1D-
String of length k is a string of the form I1α1I2α2I3...
αk−1Ik, where each I i is an icon and each α j is in {|n,
≡}.

Definition V.6. (Normal 3D-Strings) A normal 3D-
String of length k is a triple (X, Y, T), where X, Y, and
T are 1D-Strings of the form I 1α1I 2α2I 3 ... αk−1I k,
I 1′β1I 2′β2I 3′... βk−1I k′, and I 1′′γ1I 2′′γ2I 3′′... γk−1I k′′,
respectively. In these strings, each I1 , I1′, and I1′′
is an icon, each α j, β j, and γj is in {|n, ≡}, and {I1,
I2, I3, ..., Ik} = { I1′, I2′, I3′, ..., Ik′}={ I1′′, I2′′, I3′′, ...,
Ik′′}.

Example V.1. Assume that A, B, C, and D are four
icons. (A≡B|1 C|2 D, B|1 C≡A|2 D, C|2 D≡B≡A) is a 3D-
String since ≡, |1, and |2 are in{|n, ≡}, and {A, B, C,
D}={ B, C, A, D}={ C, D, B, A}. (A≡B|1 C, B|1 C|2 D,
C|2 D≡A) is not a 3D-String since {A, B, C} ≠{ B, C,
D} ≠{ C, D, A}.

The adjacent relationships and the appositional
relationships are a straightforward representation of
the spatial-temporal relationships between the icons of
a video query. There may exist other representations
for them. For example, a user specifies an eagle icon
above a tree icon, but he or she may not know how
far the distance is between them or may not care about
their relative positions. Therefore, we further define
the precedent relationships and the unknown relation-
ships for these situations.

Definition V.7. (Precedent Relationships) For any two
icons I1 and I2 in a video query, I1 is precedent to I2

in the x-axis, denoted I1➩I2, if and only if Rx(I1)<
Rx(I2). Similarly, I1 is precedent to I2 in the y-axis or
t-axis if and only if Ry(I 1)<Ry(I 2) or Rt(I 1)<Rt(I2),
respectively.

Definition V.8. (Unknown Relationships) For any two
icons I1 and I2, there is an unknown relationship be-
tween I1 and I2, denoted I1? I2, if and only if I1 and
I2 appear in the same video query and their relative
position is unknown.

The adjacent relationships, the appositional
relationships, the percedent relationships, and the un-
known relationships form the extended spatial-tempo-
ral relationship set { |n, ≡, ➩, ?}.

Definition V.9. (Video Query) A video query Q is a
triple (I , R, Q-type), where I is the set of all icons

referred to in the query, R is the set of the ranks of
icons in I , and Q-type is a number whose value is 0,
1, or 2, denoting the way to translate the spatial-
temporal relationships between the icons in I . If
Q-type is 0, all the spatial-temporal relationships be-
tween icons in I are translated into unknown
relationships. If Q-type is 1, the adjacent relationships
between icons in I are translated into precedent
relationships. If Q-type is 2, the adjacent relationships
and the appositional relationships between icons in I
are retained.

We will next define extended 1D-Strings and
extended 3D-Strings for representing video queries.

Definition V.10. (Extended 1D-Strings) An extended
1D-String of length k is a string of the form I1α1I2α2I3...
αk−1Ik, where each I i is an icon and each αj is in {|n,
≡, ➩, ?}.

Definition V.11. (Extended 3D-Strings) An extended
3D-String of length k is a triple (X, Y, T), where X,
Y, and T are 1D-Strings of the form I 1α1I 2α2I 3...
αk−1I k, I 1′β1I 2′β2I 3′... βk−1I k′, and I 1′′γ1I 2′′γ2I 3′′...
γk−1Ik′′, respectively. In these strings, each I i, I1′, and
I1′′ is an icon, each αj, βj, and γj is in {|n, ≡, ➩, ?},
and {I1, I2, I3, ..., Ik} = { I1′, I2′, I3′, ..., Ik′} = { I1′′, I2′′,
I3′′, ..., Ik′′}.

A video query can be transformed into an ex-
tended 3D-String. The transformation requires two
steps. First, a video query is transformed into a normal
3D-String according to the ranks of the icons in
the video query as stated in Algorithm V.1 and Algo-
rithm V.2. Second, the normal 3D-String is trans-
formed into an extended 3D-String according to the
query type as stated in Algorithm V.3 and Algorithm
V.4.

Algorithm V.1. (Build_1D_String(Q, X))
/* input : a video query Q */
/* output : a normal 1D-String */
0: begin
1: n←1
2: X←φ
3: for i=1 to Rx

4: begin
5: if do not exist any icon I with Rx(I)=i
6: n←n+1
7: else
8: begin
9: pick an icon with Rx(I)=i
10: if X=φ
11: X←I

Content-based Video Data Retrieval

− 461 −

12: else
13: X←X + “ |n” +I
14: end if
15: n←1
16: for each icon I′ with Rx(I ′)=i and I′≠I
17: X←X + “ ≡” +I
18: end
19: end if
20: end
21: end

Algorithm V.1 constructs a normal 1D-String from
a video query in the x-axis. The icons in the video
query are sorted according to their Rx values in the rank.
If the Rx values of two adjacent icons are the same,
an appositional relationship “≡” is inserted between
them (as shown in line 17). Otherwise, an adjacent
relationship “|n” is inserted (as shown in line 13), where
n is the difference between their Rx values. Similarly,
this algorithm can be applied in the y-axis or t-axis by
changing the Rx values to Ry or Rt values, respectively.

Algorithm V.2. (Build_3D_String(Q, (X, Y, T)))
/* input : a video query Q */
/* output : a normal 3D-String (X, Y, T) */
0: begin
1: Build_1D_String(Q, X)
2: Build_1D_String(Q, Y)
3: Build_1D_String(Q, T)
4: end

Algorithm V.2 constructs a normal 3D-String from
a video query by applying Algorithm V.1 in the x-axis,
y-axis, and t-axis.

After a normal 3D-String is constructed from a
video query, the next step is to change the spatial-
temporal relationships in the normal 3D-String
according to the query type specified by the user.
This can be done by applying the following two
algorithms.

Algorithm V.3. (Transform_1D_String(X, Q-type))
/* input : a normal 1D-String X=I1α1I2α2I3... αk−1Ik

and the query type Q-type*/
/* output : an extended 1D-String X′=I 1β1I2β2I3...

βk−1Ik */
0: begin
1: begin case
2: case Q-type = 0
3: for i=1 to k−1
4: α i←“ ?”
5: case Q-type=1
6: for i=1 to k−1
7: if α i= “ |n”

8: α i←“ ➩”
9: end if
10: end case
11: X′←X
12: return X′
13: end

Algorithm V.4. (Transform_3D_String((X, Y, T), Q-
type))
/* input : a normal 3D-String (X, Y, T) and the query

type Q-type*/
/* output : an extended 3D-String (X′, Y′, T′) */
0: begin
1: X′←Transform_1D_String(X, Q-type)
2: Y′←Transform_1D_String(Y, Q-type)
3: T′←Transform_1D_String(T, Q-type)
4: return (X′, Y′, T′)
5: end

Algorithm V.4 constructs an extended 3D-String
from a normal 3D-String by applying Algorithm V.3
in the x-axis, y-axis, and t-axis. Table 2 summarizes
the transformation of the spatial-temporal relationships
used in Algorithm V.3.

4. Video Query Processing

To check whether the symbol objects of a video
object and the spatial and temporal relationships be-
tween them satisfy a video query, we introduce a data
structure called the 3D-List and its related algorithms.
The formal definition of the 3D-List and the details
of these algorithms can be found in Liu and Chen
(1998).

VI. Other Approaches to Content-
Based Video Data Retrieval

In addition to the three approaches discussed in
the previous sections, other approaches have been
proposed which are based on various video features.

1. Query by Keywords

As in the traditional alphanumeric database,
keywords can be used to stored the semantic descrip-

Table 2. Transformation Rules for Normal 1D-Strings

Normal Type 0 Extended Type 1 Extended Type 2 Extended
1D-String 1D-String 1D-String 1D-String

A |n B A ? B A➩B A |n B
A≡B A ? B A≡B A≡B

A.L.P. Chen et al.

− 462 −

tions of a video object. This approach was adopted
by Gibbs et al. (1993), in which the keywords asso-
ciated with video objects are stored as an attribute of
the class VideoValue. Based on the object model,
Oomoto and Tanaka (1993) considered a video object
as a sequence of video frames and represented the
content of a video object as a collection of attri
bute/value pairs which are attached to the video object.

2. Query by Algebraic Operators

Weiss et al. (1994, 1995) viewed a video object
as a three-dimensional box and used algebraic opera-
tors such as concatenation, union, and parallel, to
compose video objects into a complex video object.
Users can specify temporal/spatial relationships be-
tween component video objects of a complex video
object as the query predicates of a video query.

3. Query by Categories

Smoliar and Zhang (1994) modeled the contents
of video objects in two ways. First, according to their
topics, video objects are classified into classes, and
these classes form a tree structure composed of topical
categories. Users can browse video objects in catego-
ries of interest. Second, each video shot is represented
as a movie icon, called a micon, which consists of a
volume of pixels. By employing a horizontal or vertical
slice on the micon, the movement of a symbol in the
video object can be traced.

4. Query by Intervals

The OVID system (Oomoto and Tanaka, 1993)
uses an interval as the basic unit of video objects. An
interval is associated with an object identifier and a
set of attribute/value pairs, which describe its meanings.
Users can retrieve video objects based on a description
in attribute/value form. They also proposed a video
query language VideoSQL, in which a new inheritance
mechanism based on the interval inclusion relationship
between video objects is applied to enable users to
specify video queries.

5. Query by Spatial/Temporal Relationships of
Video Objects

In Little and Ghafoor (1993), a set of temporal
operators was designed for video queries. However,
the temporal relationships can be evaluated between
frame sequences only. Temporal relationships of
content objects are not considered. Lee and Kuo
(1993) considered sixteen primitive types of motion

for specifying the tracks of content objects in queries.
However, the spatial relationships between content
objects were not considered. In Yu and Wolf (1997),
the spatial/temporal semantics of video data were
studied. The Conceptual Spatial Object (CSO), Con-
ceptual Temporal Object (CTO), Physical Object
(PO) and a set of predicate logics were defined to
express queries. Since spatial and temporal semantics
are only captured by CSOs and CTOs, semantics that
are not defined in CSOs and CTOs cannot be applied
in queries.

6. Query by Motion Tracks of Symbol Objects

Since video objects have temporal characteristics,
the appearance of a symbol forms a three dimensional
curve, called the motion track of the symbol. Using
a graphical query tool, users can draw a 3D curve to
retrieve the multimedia objects which contain symbols
with similar motion tracks. For example, we can re-
trieve video objects that contain a spiraling eagle whose
motion track is like the curve specified. Wai and Chen
(1997) proposed an approach to approximate matching
of the motion tracks of symbol objects.

VII. Conclusion

In this paper, we have surveyed important ap-
proaches to content-based multimedia data retrieval.
First, for video queries based on cinematic structures,
a mask matching approach has been proposed to detect
shot changes in an MPEG coded video stream. It takes
advantage of reference ratio variances of macroblocks
between MPEG coded frames to detect shot changes.
In this approach, the processing time is reduced by
directly evaluating MPEG coded data. In the im-
plementation, a function is employed to quantize the
results into shot change probability values. The results
have been illustrated and discussed. Moreover, a con-
version function has been presented for elimination of
misdetection and loss of detection of shot changes.

Second, techniques for video query by key frame
have been presented. In this approach, a set of key
frames is automatically extracted from the compressed
video. A query image is given to retrieve the video
which contains frames similar to the query image. The
similarity measurement is based on a comparison of
the histogram of dominant colors. Moreover, the av-
erage luminance value of the image is applied as a filter
to avoid matching all key frames.

Third, we have discussed the 3D-string approach
for content-based video data retrieval. Based on the
well known representation of images, the 2D-String,
we have defined the notion of a 3D-String for repre-

Content-based Video Data Retrieval

− 463 −

sentation of the spatial and temporal relationships
between icons in a video query. Based on 3D-Strings,
the problem of video query processing is transformed
into a problem of three-dimensional pattern matching.
Since the string matching algorithms proposed in the
past cannot solve this problem, the 3D-List data struc-
ture and its related algorithms have been proposed.
There are two major techniques involved in the pro-
posed algorithms.

Content-based video data retrieval is an active
research area. Although fruitful research results have
been reported, there are many challenging problems
which need to be solved.

First, based on the relat ionships between
macroblocks, the technique for content object detection
can be extended. Using this technique, content objects
as well as their spatial and temporal information can
be detected. Video indexes for supporting content-
based queries can, therefore, be automatically and ef-
ficiently constructed.

Second, integration of various approaches to
content-based video data retrieval is necessary to provide
users with a uniform interface to access video data.
Data structures which can provide efficient access to
various video features need to be developed.

Third, for video retrieval and query processing,
the integration of video databases and generic object
databases must be considered. In the integrated model,
not only can video data be integrated the data of generic
objects, but generic objects can also be integrated with
the content objects in a video. The process of object
identification, integration, and execution plan deriva-
tion between two databases needs to be investigated
with the goal of providing more information to users.

References

Adjeroh, D. A. and M. C. Lee (1997) Adaptive transform domain
video scene analysis. Proc. of IEEE Multimedia Computing and
Systems, pp. 203-210. Ottawa, Ontario, Canada.

Aho, A. V. and M. J. Corasick (1979) Efficient string matching:
an aid to bibliographic search. Comm. ACM, 18(2), 333-340.

Allen, J. F. (1983) Maintaining knowledge about temporal intervals.
Comm. ACM, 26(11), 832-842.

Arman, F., A. Hsu, and M. Y. Chiu (1993) Image processing on
compressed data for large video databases. Proc. of First ACM
Int’l Conf. on Multimedia, pp. 251-258. Anaheim, CA, U.S.A.

Baeza-Yates, R. and G. H. Gonnet (1992) A new approach to text
searching. Comm. ACM, 35(10), 74-82.

Baker, T. P. (1978) A technique for extending rapid exact-match
string matching to arrays of more than one dimension. SIAM
J. Comput., 7(11), 533-541.

Bakhmutova, I. V., V. D. Gusev, and T. N. Titkova (1997) The search
for adaptations in song melodies. Computer Music Journal, 21
(1), 58-67.

Balaban, M. (1996) The music structures approach to knowledge
representation for music processing. Computer Music Journal,
20(2), 96-111.

Bird, R. S. (1977) Two dimensional pattern matching. Information
Processing Letters, 6(5), 168-170.

Boyer, R. S. and J. S. Moore (1977) A fast string searching algorithm.
Comm. ACM, 20(10), 762-772.

Brown, M. G. (1995) Automatic content-based retrieval of broadcast
news. Proc. of ACM Third Intl. Conf. on Multimedia, pp. 35-
43.

Chang, C. W. and S. Y. Lee (1995) Statistical and topological feature
extraction and matching in video sequences. Proc. of National
Computer Symposium, pp. 693-700.

Chang, S. F. (1997) Compressed-domain techniques for image/video
indexing and manipulation. Proc. of IEEE Int’l. Conf. on Circuits
and Systems.

Chang, S. K., Q. Y. Shi, and C. W. Yan (1987) Iconic indexing
by 2-D strings. IEEE Trans. on Pattern Analysis and Machine
Intelligence, PAMI-9 (3), 413-428.

Chang, S. K., C. W. Yan, D. C. Dimitroff, and T. Arndt (1988) An
intelligent image database system. IEEE Trans. on Software
Eng., 14(5), 681-688.

Chen, A. L. P., C. C. Liu, K. L. Lee, and C. C. Chen (1995) The
design of a video database system. Proc. Real-Time and Media
Systems.

Chen, J. C. C. and A. L. P. Chen (1998) Query by rhythm: an approach
for song retrieval in music databases. Proc. IEEE Eighth In-
ternational Workshop on Research Issues in Data Engineering:
Continuous-Media Databases and Applications.

Chiueh, T. C. (1994) Content-based image indexing. Proc. of the
20th International Conference on VLDB, pp. 582-593.

Chou, T. C., A. L. P. Chen, and C. C. Liu (1996) Music databases:
indexing techniques and implementation. Proc. IEEE Intl.
Workshop on Multimedia Data Base Management Systems.

Chua, T. S. and L. Q. Ruan (1995) A video retrieval and sequencing
system. ACM Trans. on Information Systems, 13(4), 373-407.

Davenport, G., T. A. Smith, and N. Pincever (1991) Cinematic
primitives for multimedia. IEEE Computer Graphics &
Applications, 67-74.

Dimitrova, N. and F. Golshani (1995) Motion recovery for video
content classification. ACM Trans. on Info. Sys., 13(4), 408-
439.

Fan, J. J. and K. Y. Su (1993) An efficient algorithm for matching
multiple patterns. IEEE Trans. on Knowledge and Data
Engineering, 5(12), 339-351.

Gall, D. Le (1991) MPEG: a video compression standard for mul-
timedia applications. Communications of ACM, 34(4), 46-58.

Ghias, A., J. Logan, D. Chamberlin, and B. C. Smith (1995) Query
by humming: musical information retrieval in an audio database.
Proc. of ACM Multimedia, pp. 231-236. Sam Francisco, CA,
U.S.A.

Gibbs, S., C. Breiteneder, and D. Tsichritzis (1993) Audio/video
database: an object-oriented approach. Proc. on Int’l. Conf. on
Data Eng., pp. 381-390.

Gudivada, V. N. and V. V. Raghavan (1995) Design and evaluation
of algorithms for image retrieval by spatial similarity. ACM
Trans. on Info. Sys., 13(2), 115-144.

Jagadish, H. V. (1991) A retrieval technique for similar shapes.
Proc. of ACM SIGMOD Conf. on Management of Data, pp. 208-
217. Denver, CO, U.S.A.

Kuo, T. C. T. and A. L. P. Chen (1996) Indexing, query interface
and query processing for Venus: a video database system. Proc.
of Cooperative Databases for Advance Applications.

Kuo, T. C. T., Y. B. Lin, and A. L. P. Chen (1996) Efficient shot
change detection on compressed video data. Proc. of IEEE
Workshop on Multimedia Database Management Systems, pp.
101-108.

Lee, S. Y. and H. M. Kuo (1993) Video indexing: an approach based

A.L.P. Chen et al.

− 464 −

on moving object and track. Proc. of SPIE - The Int’l Society
for Optical Engineering, pp. 25-36.

Lin, Y. B. (1996) An Efficient Method to Build Video Indexes from
Compressed Data. M.S. Thesis. Computer Science of National
Tsing Hua Univ., Hsinchu, Taiwan, R.O.C..

Little, T. D. C. and A. Ghafoor (1993) Interval-based conceptual
models for time-dependent multimedia data. IEEE Transaction
on Knowledge and Data Engineering, pp. 551-563.

Liu, C. C. and A. L. P. Chen (1996a) Extending object data model
for representing the spatial-temporal relationships and constraints
of multimedia data. Proc. 7th Workshop on Object-Oriented
Technology and Applications, pp. 272-277.

Liu, C. C. and A. L. P. Chen (1996b) Modeling and query processing
of distributed multimedia databases. Proc. Real-Time and Media
Systems.

Liu, C. C. and A. L. P. Chen (1997) Vega: a multimedia database
system supporting content-based retrieval. Journal of Informa-
tion Science and Engineering, 13(3), 369-398.

Liu, C. C. and A. L. P. Chen (1999) 3D-List: a data structure for
efficient video query processing. IEEE Trans. on Knowledge
and Data Engineering (accepted).

Liu, C. C., A. J. L. Hsu, and A. L. P. Chen (1999) Efficient near
neighbor searching using multiple indexes for content-based
multimedia retrieval. Multimedia Tools and Systems Journal
(accepted).

Meng, I., Y. Juan, and S. F. Chang (1995) Scene change detection
in a MPEG compressed video sequence. SPIE Symposium on
Electronic Imaging Science & Technology−Digital Video
Compression: Algorithms and Technologies.

Myron, F., H. Sawhny, W. Niblack, J. Ashley, Q. Huang, B. Dom,
M. Gorkani, J. Hafner, D. Lee, D. Petkovic, D. Steele, and P.
Yanker (1995) Query by image and video content: the QBIC
system. IEEE Computer Magazine, 28(9), 23-32.

Nagasaka, A. and Y. Tanaka (1991) Automatic video indexing and
full-video search for object appearances. 2nd Working Confer-
ence on Visual Database Systems, pp. 119-133. Budapest,
Hungary.

Oomoto, E. and K. Tanaka (1993) OVID: Design and implementation
of a video-object database system. IEEE Trans. on Knowledge
and Data Eng., 5(4), 629-643.

Otsuji, K. and Y. Tonomura (1993) Projection detecting filter for
video cut detection. Proc. of ACM Multimedia, pp. 251-257.
Anaheim, CA, U.S.A.

Petrakis, E. G. M. and S. C. Orphanoudakis (1993) Methodology
for the representation, indexing and retrieval of images by content.
Image and Vision Computing, 11(8), 504-521.

Philips, M. and W. Wolf (1996) Video segmentation techniques for
news. Proc. of SPIE Photonic East.

Rousspoulos, N., C. Faloutsos, and T. Sellis (1988) An efficient
pictorial database system for PSQL. IEEE Trans. on Software
Eng., 14(5), 639-650.

Smoliar, S. W. and H. J. Zhang (1994) Content-based video indexing
and retrieval. IEEE Multimedia, 1(2), 62-72.

Swanberg, D., C. F. Shu, and R. Jain (1993) Knowledge guided
parsing in video databases. Proc. of SPIE Conference on Storage
and Retrieval for Image and Video Database, pp. 13-24.

Tonomura, Y. and S. Abe (1990) Content oriented visual interface
using video icons for visual database systems. Journal of Visual
Languages and Computing, pp. 183-198.

Tonomura, Y. and S. Abe (1994) Structured video computing. IEEE
Multimedia, 1(3), 34-43.

Ueda, H., T. Miyatake, and S. Yoshizawa (1991) Impact: an inter-
active natural-motion-picture dedicated multimedia authoring
system. Proc. of Human Factors in Computing Systems (CHI91),
pp. 343-354. New Orleans, LA, U.S.A.

Wai, T. T. Y. and A. L. P. Chen (1997) Retrieving video data via
motion tracks of content symbols. Proc. ACM 6th Int’l. Conf.
on Information and Knowledge Management.

Weiss, R., A. Duda, and D. K. Gifford (1994) Content-Based Access
to Algebraic Video. Proc. of the Int’l. Conf. on Multimedia
Computing and Systems, pp. 140-151.

Weiss, R., A. Duda, and D. K. Gifford (1995) Composition and
search with a video algebra. IEEE Multimedia, 2(1), 12-25.

Wold, E. T. Blum, D. Keislar, and J. Wheaton (1996) Content-based
classification, search, and retrieval of audio. IEEE Multimedia,
3(3), 27-36.

Yeung, M. M., B. L. Yeo, W. Wolf, and B. Liu (1995) Video
browsing using clustering and scene transitions on compressed
sequences. IS&T/SPIE Symposium Proceedings, pp. 399-413.

Yoshitaka, A. (1994) Knowledge-assisted content-based retrieval
for multimedia databases. IEEE Multimedia, 1(4), 12-21.

Yu, H. H. and W. Wolf (1997) A visual system for video and image
databases. Proc. of IEEE Multimedia Computing and Systems,
pp. 517-524. Ottawa, Ontario, Canada.

Zhang, H. J., A. Kankanhalli, and S. W. Smoliar (1993) Automatic
partitioning of video. IEEE Multimedia System, 1(1), 10-28.

Content-based Video Data Retrieval

− 465 −

