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ABSTRACT

Finite mixture multivariate generalized linear modeling has been shown to be an important analytic
tool for many research fields, for example, image recognition, astronomical data classification, biomedicine
diagnosis, and biological classification. Recent statistical and computational advances have further
encouraged researchers to explore the modeling possibility using the Bayesian framework. We compare
Expectation (E)-Maximization (M) algorithms for maximum likelihood estimation of classical statistics
with Gibbs sampling methods of Bayesian statistics in estimating finite mixture multivariate generalized
linear models. A Monte Carlo study to compare the two methods is provided for practical reference. We
also propose two finite mixture multivariate generalized linear models that can allow more flexibility in
modeling substantive applications. The Longitudinal Study of American Youth (LSAY) data set is also
analyzed as a practical application.

Key Words: finite mixture models, multivariate generalized linear models, Gibbs sampling, E-M algorithms,
Bayesian theory

[. Introduction 1997), discrete outcomes (G al., 1996; Brookset
al., 1997; Wanget al., 1996; Wang and Puterman,

The study of finite mixture multivariate general- 1998), and combinations of continuous and discrete
ized linear models is one of the significant researcloutcomes (Muthért al, 1996; Muthén and Shedden,
topics which has drawn much attention from researcht999) with more realistic modeling assumptions.
ers in recent years for both statistical and substantive  The proposed finite mixture multivariate gener-
reasons. In particular, the significance of finite mixturealized linear models can cover a wide range of over-
models has been re-emphasized recently in varioudispersed generalized linear models which can often
practical research areas, including image recognitiohe seen in many substantive applications, for example,
(Murtagh and Raftery, 1984; Campbell al, 1997), longitudinal research or repeated measurement studies.
astronomical data classification (Celeux and GovaerfThese overdispersed models are usually analyzed by
1995; Mukerjeeet al., 1998), biomedicine diagnosis employing mixed-effects approaches (Breslow and
(Meltonet al., 1994; Pickering and Forbes, 1984; YangClayton, 1993). The mixed-effects approach assumes
and Becker, 1997) and biological classification (Wangn infinite mixture of fixed and random effects which
and Puterman, 1998). The major reason for the popae included to account for the non-explainable random
larity of finite mixture modeling is that recent statis- effects or the extra-variations within the sample.
tical advances have made it feasible to fit finite mixtureAccording to various distributional assumptions, the
models in a wide range of applications. Thanks to thesendom effects may result in beta-binomial distribu-
statistical developments, these models now can de#ibns (e.g., extra-binomial regression models), nega-
with continuous outcomes (Jedidi al.,, 1997; Yung, tive binomial distributions (e.g., extra-Poisson regres-
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sion models), or non-tractable forms. In contrast, finitdBayesian models. In the last section, conclusions based
mixture models assume that a set of different distrion comparisons between the different estimation
butions is present in the outcome variables. When theseethods and suggestions for the use of the proposed
distributions come from the same exponential familymodels are provided.
this is equivalent to saying that at least two different
sets of distributional (scale/position) parameters are ih|. Finite Mixture Generalized Linear
the sample. Therefore, statistical interpretations can Models
indicate that there are non-homogeneous classes or
groups in the sample. Obviously, finite mixture models We review the recent literature on finite mixture
are more appealing and interpretable than mixed-efmodels for binomial, binary and Poisson outcomes in
fects models in many applications. More importantly this section. The finite mixture models defined here
these finite mixture models have important substantiveontain conditional probabilities (CP) for the outcome
meaning in a broad range of research areas. probabilities, given that a certain distribution is true,
The popularity of finite mixture modeling can be and mixing probabilities (MP) for the mixing rates of
seen from the recent literature cited above; howevethe two distributions. For a set of non-repeated Poisson
relatively little research has focused on finite mixtureoutcomes, Wanget al. (1996) proposed two finite
multivariate generalized linear models using Bayesiamixture models that can deal with data sets that have
theory. Most of the papers in the literature have usedr do not have independent variables. The independent
the maximum likelihood estimation theory and Expec~ariables are included as covariates for the conditional
tation (E)-Maximization (M) algorithms (Dempstet  probabilities. They used an E-M algorithm combined
al., 1977) for parameter estimation; therefore, most ofvith a modified quasi-Newton algorithm in the esti-
them were within the classical statistics frameworkmation procedures.
One of the reasons for this is the computational com-  For a set of non-repeated binomial outcomes,
plexity of Bayesian finite mixture models. AdvancesFollmann and Lambert (1989) suggested finite mixture
modern statistical computation, e.g., Gibbs samplingnodels that could handle binomial outcomes with or
(Tanner, 1996), have helped solve these problems. Without covariates (for conditional probability). A
is very necessary to evaluate and compare the two estion-parametric estimation method was proposed in
mation methods (E-M algorithm and Gibbs sampling)heir work.
and provide a general reference for practical researchers. One of the major classes of finite mixture models
One of the two aims of this paper is to compare theonsists of the so-called latent class analysis (LCA)
E-M algorithms and Gibbs sampling from variousmodels. Typical LCA models have been studied
computational and statistical viewpoints based on Montéor decades; see, for example, Goodman (1974),
Carlo studies. Bartholomew (1987) and many other applications.
The other major aim of this paper is to introduceRecently, numerous researchers have proposed several
two relatively new finite mixture multivariate gener- extended versions of LCA (ELCA) models. For example,
alized linear models. We demonstrate the validity ofQu et al. (1996) proposed several ELCA models for
the two models using simulated and real data sets. Farultivariate binary outcomes. Specifically, they were
the purpose of simplicity, all the finite mixture modelsinterested in studying the analyses of sensitivity and
discussed in this paper are limited to two differentspecificity of some medical diagnosis criteria
distribution forms only although they can be easily(multivariate binary outcomes). Their ELCA models
extended to more than two distributions. contain possible random effects, direct effects, or fixed
The organization of this paper is as follows. Ineffects for conditional probabilities. The parameter
Section I, we explain the significance and propertiegstimation procedures employed in their paper were the
of finite mixture models and discuss the aims of thi€€-M algorithms and Gauss-Hermit quadrature approxi-
paper. In Section Il, we review the finite mixture mations (if random effects are involved in the ELCA
generalized linear models. Section Ill contains mathmodels). Wang and Puterman (1998) suggested a similar
ematical derivations of the two estimation methods foELCA model without random effects for a non-repeated
a basic finite mixture model. The model will be usedbinomial data set. In particular, covariates were for
in later Monte Carlo studies to compare the two method$oth conditional probabilities and mixing probability
Two Bayesian finite mixture multivariate generalizedin this model.
linear models are introduced in Section IV. Section It seems that several new models have been pro-
V presents the designs and results of the estimatioposed in the last few years; however, very few finite
method comparison and illustrates the examples usimpixture multivariate generalized linear models have
analysis of simulated and real data sets using the twarctually been applied using Bayesian theory. Thanks
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to recent statistical computation advances, the abowtata) and using a set of reasonable starting values, the
and other useful models are also possible under thexpectation (E-step) fo€ and the maximization (M-
Bayesian framework if Gibbs sampling is used. Westep) for the conditional probabilities and class propor-
shall provide a general guideline which researchers caions alternate until convergence occurs.

employ in using E-M algorithms or Gibbs sampling. In the E-step, the posterior probabilitibg are
evaluated from current parameter estimates. In the M-
l1l. E-M Algorithm and Gibbs Sam- step, the class proportion are updated as
pling K

= c

The two competing estimation methods, the use ¢

of E-M algorithm and Gibbs sampling, are outlined in

this section. The main idea behind a generic E-M
. : . : where

algorithm is to implement an expectation to replace the

“missing” or “unobservable” data in a statistical model; %

therefore, a complete data likelihood can be obtained Kc:i:lhci , ¢=0, 1,

using the observed data. By maximizing the complete

data likelihood function, the maximum likelihood and the parameters in the component distributions are

estimation (MLE) of the model parameters can baipdated as

obtained. To simplify the comparison, we will use a

typical LCA model for both methods. We will further .= Sic . c=0, 1,k=1, 2, 3, ...,

3 K
c=o °©

describe the major steps of the E-M algorithm in the - Ke
following. Similar E-M algorithms were also used in
several studies, for example, those of @l (1996),
Wang and Puterman (1998), and Yang (1998). Let

1 ~=Pr(uix=1|C=c) be the conditional probability of the S = igl hUik -

kth binary responsek£l, ...,t) being 1 given thaC=c

(c=0, 1). The probability that thi¢gh subject will have The E-M algorithm was programmed using the FOR-

where

outcomesU;=(ujq, ..., Uit)’ IS given by TRAN 90 language.
Gibbs sampling has a much complicated estima-
U)= i Ag.(U) tion procedure; see, e.g., Tanner (1996) and references
glj)= 2 1.9.Y5), : o .
c=0 therein. Therefore, only specific mechanisms for the

_ _ N— e LCA model will be provided here. The main objective
Wheré?\/cerfiﬁ Igteiqi?ggggs,irﬁgict:io%)él independenc f Gi_bbs_sampling Is to synthesize the cor_nplicate(_j jo_int
of t binary responses can be assumed. Therefor |st_r|but|on from randomly Sa’_“p'ed c_or_1d|t|o_nal_ d|s_tr|—
g(U) has the form utions becau_sg such c_ompllcated Jom_t distributions
can be very difficult to integrate analytically. For a
I_\] , L more complete introduction of LCA by using Gibbs
gc(Ui)zk:l (RN sampling, please see Yang and Muthén (1997a, 1997b).
The method employed in this paper to obtain the para-
Thus, the likelihood function for each subject in thismeter estimates is to average the random samples ac-
model based on the conditional independence assumgquired from Gibbs sampling procedures.

tion is given by We will describe the major Gibbs sampling setups
for estimating our finite mixture models in the following.
gUu)= i Acﬁ nlk‘cik(l_nkc)l—uik_ Using the same notations as for the E-M algorithm, the
c=0 ‘k=1 conditional functiorf (uy|c;) has a Bernoulli distribution;

however, instead of being latent class indicators as in
the previous methodg; are now distributed as in a
Bernoulli distribution. Both Bernoulli distributions
A9.U)) have conjugate Dirichlet prior distributions. Following

hg=—F"—". are the equations for the Bayesian LCA model:
2 Ag,)

The posterior probability oE=c for theith subject
with binary outcomedJ; is given by

Uilci~Bernoulli( ),
Replacing the class indicat@ with its expectation
value (similar to a typical E-M algorithm for missing where r~Dirichlet(aq,a,),
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and Similarly, we can extend the previous ELCA model
to analyze multivariate Poisson outcomes. The follow-
ci~Bernoulli(A), whereA~Dirichlet(ay,a5). ing equation describes the second model:

We select non-informative priors for the parameters in Yiklci~Poissorfkic.),

the LCA model by settingr; anda, equal to 1. Non-

informative priors are chosen to ensure that the E-Mvhere

algorithm and Gibbs sampling are used on the same

platforms; therefore, the difference recorded in this 109 (Kikc)=Bokct BikcWiit BokWai+ . .. + BokWpi.
study is only due to estimation algorithms themselves,

not to the priors. The posteriors were obtained antfloreover,

parameter estimations were performed using the BUGS

(Spiegelhalteet al., 1995a, 1995b) computer software. Ci~Bernoulli(4;),
IV. New Bayesian Models where
In this section, we will describe two finite mixture logit(A))=ag+aXqi+aoXoi+... + U pXmi.

multivariate generalized linear models using the theory

of Bayesian statistics. The first model is an extendedgain, we select conjugate prior distributions for para-
latent class analysis model for repeated measurementseters; that is,

with two sets of independent variables. The indepen-

dent variables are used as covariates for mixing and §~Normal(uﬁ,aﬁz) and g~Normal g, 04,
conditional probabilities. This model is described based

on Bayesian statistics in the following. Assume thatwhereu,, 04, tg, andog are the constant parameters
yik is thekth binary response for subjegtand that, for their corresponding prior distributions. The two
C; are the latent class indicatorg are the conditional Bayesian finite mixture multivariate generalized linear

probabilities foryy given C;; that is, models will be discussed and applied in Section V.
yilCi~Bernoulli(7ic), V.Monte Carlo and Real Data lllus-
trations
where

To compare the two estimation methods and show
logit(7Ec)=Bokct BikcWai* BokWait ... +BpkWpi. the plausibility of the proposed Bayesian models, brief
simulation studies and real data analyses were con-
Moreover, in an LCA mode(; have a Bernoulli distribu- ducted.
tion with parameten:
1. Comparison of the Methods
Ci~Bernoulli(A).
Monte Carlo comparisons of the E-M algorithms
In other words is the mixing rate of the two distribu- and Gibbs sampling in estimating the finite mixture
tions. In an ELCA model, we can further assume thatodels are conducted using the typical LCA model.
each subject’s mixing probability is to be predicted byThe design of this study was as follows. Two sample
some covariates. This can also be described in the forgizes N=300 and\N=800, were used. In the LCA model,

of an equation as follows: we used a four-item-test with two latent classes model.
The “true” values for generating simulated data sets
logit(A))=ap+a1Xgj+aoXoi+ ... + A pXmi. are listed inTable 1

Because there is still a lack of a robust diagnostic
Further, we select conjugate prior distributions formethod for detecting convergence, we had to consider

parameters; that is, several methods for a single replication in order to
determine whether a Gibbs sampling estimation would
,§~Normal(u3,a,32) and g~Normalu,,0,%), converge. Nevertheless, we found, from practical

experience, that a Gibbs sampling chain with discard-
where lq, 04, Ug, anddp are the constant parametersing of 5,000 burn-in samples and recording of every
for their corresponding prior distributions. 5th of 25,000 samples could usually satisfy most of the
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Table 1. LCA Model with N=300 andN=800, Averages of 20 Replications

N=300 N=800
E-M Gibbs E-M Gibbs E-M Gibbs E-M Gibbs
True Sampling Sampling Sampling Sampling
Estimates S. D. Estimates S. D.
P.=1 0.6 0.6042 0.6008 0.0452 0.0452 0.6029 0.6012 0.0282 0.0279
Tho 0.1419 0.1545 0.1637 0.0461 0.0455 0.1396 0.1436 0.0280 0.0279
Tho 0.1419 0.1311 0.1405 0.0448 0.0446 0.1386 0.1427 0.0280 0.0278
o 0.7311 0.7409 0.7328 0.0548 0.0544 0.7268 0.7237 0.0342 0.0339
o 0.7311 0.7483 0.7420 0.0553 0.0547 0.7343 0.7311 0.0346 0.0345
M) 0.7311 0.7133 0.7093 0.0415 0.0416 0.7317 0.7310 0.0258 0.0257
o 0.7311 0.7259 0.7234 0.0417 0.0414 0.7307 0.7302 0.0258 0.0257
M1 0.1419 0.1444 0.1503 0.0348 0.0348 0.1419 0.1431 0.0211 0.0211
M 0.1419 0.1361 0.1390 0.0343 0.0343 0.1354 0.1365 0.0207 0.0208

diagnostic methods employed in this paper. We confFable 2. Estimation Results for Mixture PoissoN=300, Averages

ducted twenty replications for data simulation and of 20 Replications
estimation using both methods and summarize the results
in Table 1. True  Mean S.D. 25% 97.5% Median
For each replication and method, we used thre@c=1) 0.386 0.3427 0.0568 0.2319 0.4544 0.3423
sets of starting values: one set contained “true values’o -0.7 -0.7801 0.3843 -1.6080 -0.1042 -0.7584
another set was one estimated standard deviation belzgv é-g (1)-2328 8-‘1‘(1)23 8-2;32 g-iggg (1)-533%(2)
H 10 -U. -U. . -U. -U. -U.
the true vaIu_eg and the last set was one estimat i 05 05407 01129 -0.7640 -0.3202 -05416
standard_dewatlon above the true values. We select ) 0.8 0.8191 01228 -1.0710 -0.5874 -0.8168
the solution that was the closest to the true values as,, -0.8  -0.6448 0.1132 -0.8665 -0.4247 -0.6458
our final solution; therefore, we could avoid local modesBoso -0.8 -0.8360 0.1224 -1.0860 -0.6036 -0.8336
that might trap the estimation methods and give Iesgon '8-2 'ﬁggg 8-‘5‘5193‘3‘ '2-2238 'g-gggg 'i-ggjg
1 H 1 021 -U. 4. . L. =U. =41.
accura'ge_r_esults. The pract_lcal strategy of trying dif o 1 10890 04809 -2.1700 -0.2783 -1.0440
ferent initial \_/alut_as to_ gvmd_local modes has bee . 1 -1.8750 0.6786 -3.5110 -0.8282 -1.7730
useful for estimating finite mixture models in many g, -1 -0.6943 0.3620 -1.4780 -0.0520 -0.6748
studies (Muthén and Shedden, 1999; Spiegelh&ter Biio 0.5 0.5138 0.0769 0.3613 0.6613 0.5141
al., 1995b). Bi2o 0.5 0.6386 0.1149 0.4140 0.8632 0.6406
Bi3o 0.3 0.1619 0.1120 -0.0599 0.3813 0.1618
. Biao 0.3 0.3184 0.0972 0.1238 0.5032 0.3212
2. Monte Carlo lllustration Brso 0.3 0.3230 0.1357 0.0567 0.5841 0.3230
Bi11 0.8 0.8994 0.3097 0.3698 1.5660 0.8737
In this section, we will demonstrate the BayesianBiz: 0.8 0.8683 0.4194 0.0514 1.7630 0.8634
plausibility of the finite mixture multivariate Poisson Pt 1.2 1.5150 0.2973 0.9781 2.1490 1.5030

1.2 1.6160 0.3350 1.0440 2.3760 1.5810

. e - Bim
model by analyzing artificial data sets. The finite 15 11110 02995 0.6833 15520 1.1090

mixture multivariate Poisson model contains one con-—=
tinuous covariateW) for predicting conditional prob- Note 2.5% and 97.5% are the lower and upper highest density
abilities (ki) and one continuous covariatX)(for regions (H.D.R.), respectively.

predicting mixing probabilitiesA{). The values of the

intercepts €o,Boke) and the slopesaf, By for Wand in Table 2. The results confirm that the Bayesian model
X used to generate Poisson data sets are list€dlile  is plausible in practice and can be reliably estimated.
2.

Similarly, we conducted twenty replications for 3. Real Data lllustration

this model and used the same rules for selecting initial

values. Because of our success with Bayesian LCA  The National Science Foundation of the United
models as described in Section V.1, we selected @tates approved a project called Longitudinal Study of
sample size of 300 for data simulation. The samémerican Youth (LSAY) in 1986 to measure American
numbers of updating samples for Gibbs sampling agouth’s mathematics and science achievement. We
described in Section V.1 were used in estimating theelected five mathematics test items and some back-
model. We summarize the parameter estimation resulgground variables from the LSAY project to demonstrate
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Table 3. Descriptive Statistics of the LSAY Data Set

Table 4. Bayesian ELCA Model for the LSAY Data Set

Variable ~ Mean Std. Dev. Minimum Maximum Label Estimates S. D. 2.5% 97.5%
CK201101 0.79  0.41 0 1 GIVE 90,000,000 IN SC P=1 0.4813 0.0501 0.3831 0.5795
CK202501 0.59 0.49 0 1 CONVERT .425 TO PERCE Tho 0.7449 0.0253 0.6942 0.7919
CK206701 0.7 0.46 0 1 AT 6 DOZ./MONTH, COOK Tho 0.4497 0.0322 0.3851 0.5109
CK286501 0.54 0.5 0 1 FIND THE QUOTIENT:1 o 0.6046 0.0301 0.5429 0.6621
CK286502 0.53 0.5 0 1 FIND THE QUOTIENT: +1 o 0.1960 0.0488 0.0989 0.2870
GENDER  0.47 0.5 0 1 STUDENT GENDER ) 0.1799 0.0425 0.0958 0.2629
HSCRE 386 138 0 6 HOME SCIENCE RESOURCE 11, 0.8364 0.0240 0.7869 0.8809
MOTHED 2.73 1.11 1 5 COMPOSITE MOTHER'S ED o 0.7482 0.0309 0.6885 0.8076
SMHAT  11.79 2.48 2.25 16 STUDENT MATH ATTITUDE 1 0.8029 0.0267 0.7494 0.8543
SMHAX 227 169 0 8 STUDENT MATH ANXIETY Ty 0.9154 0.0398 0.8388 0.9944
, — T, 0.8977 0.0464 0.8112 0.9965

Note Number of valid observations=685. s ~0.077% 0.2161 ~0.5024 0.3416
a, -0.2640 0.1936 -0.6477 0.1047
a, 0.3700 0.0886 0.2016 0.5465
the proposed ELCA model. There were 685 Grader; 0.1714 0.0716 0.0319 0.3128
Seven students in our analysis, and the descriptivBoo 1.0790 0.1342 0.8220 1.3410
statistics are listed iffable 3 Pozo _g'iggf 0611321647 —0.04?;20 0602%2

: ) ) : 030 . . . .

We _used subjects’ gender, mother s education anﬁ040 _1.8390 6.6970 ~2 2160 -0.9128
home science resources as covariates for the latent clags, -1.5510 0.3150 —2.2510 -1.0320
indicators (mixing probabilities). The latent class statussy;; 1.6640 0.1786 1.3240 2.0240
can be interpreted as students’ true latent mastery abilit§oz1 11110 0.1683 0.8019 1.4560
in mathematics. Furthermore, students’ math attitudéos: 1.4330 0.1732 1.1090 1.7890
d math anxiety are predictors for conditional’* 2.6150 0.8970 1.6750 >.2010
an o y P ) . 051 2.4310 1.0360 1.4730 5.7250
probabilities. We then have the following expression:g, 0.0439 0.0344 -0.0243 0.1119
B 0.1206 0.0516 0.0122 0.2172

yik|Ci~Bernoulli(7gy), Bzo 0.057% 0.0479 -0.0382 0.1495

Bo1 0.1127 0.0812 -0.0458 0.2753

wherei=1, ..., 685,k=1, ..., 5,c=0, 1,

l0git(78kc)=Lokct BrcSMHAT+ B SMHAX;,

and f~Normakus,og’).

Notesag: intercept;a;: slope for Genderg,: slope for Mother’s
Education; as: slope for Home Science Resourcéyy:
Intercepts;B,4: slopes for Math Attitudef,,: slopes for Math
Anxiety

#Non-significant.

®2.5% and 97.5% are the lower and upper highest density regions

(H.D.R.), respectively.

To simplify the interpretations, we constraint slopes for

math attitude and anxiety equal across the test items

and set intercepts estimated freely between differerdampling chain with discarding of 10,000 burn-in
The estimated results are listedTable 4
Moreover,

items.

Ci~Bernoulli(A;),

where

logit(Aj))=aota,GENDER;+a,MOTHED,;

and

+a,HSCRE;,

a~Normal(uy,0,9).

samples and recording of every 10th of 50,000 samples
was used for this example. The Gibbs sampling chain
satisfied the convergence diagnostic tests.

Some interesting results are revealed by our study
of this model and are summarized as follows. The
inferences from mother’s education and home science
resources to students’ latent mastery status are found
to be statistically significant while the inferences from
gender have no significant effects. Details of the
parameter estimates can be found in Table 4.

V1. Conclusion

Our primary results show that Gibbs sampling
gives more accurate estimates and smaller standard

We used non-informative priors for parameters; i.e.deviations than the E-M algorithm does although the
we let u,=pp=0 and o,=05=100. Further, a Gibbs differences are small in our examples. Nevertheless,
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a comparison (Table 1) was made given that GibbReferences
sampling has non-informative priors. Practical expe-
rience shows that Gibbs sampling may perform mucBartholomew, D. J. (1987)Latent Variable Models and Factor

better when informative priors are available. Analysis Oxford University Press, New York, NY, U.S.A.
. . . Best, N. G., M. K. Cowles, and S. K. Vines (199Z)ODA: Con-
For the LCA madel considered in this paper, we vergence Diagnosis and Output Analysis Software for Gibbs

found that Gibbs sampling took much more time than  gampiing outpytver. 0.4. MRC Biostatistics Unit, IPH, Cam-
the E-M algorithm did. For example, Gibbs sampling  bridge, U.K.
needed about 50 minutes to complete a 5k/25k run iBreslow, N. E. and D. G. Clayton (1993) Approximate inference
order to pass most of the convergence diagnostic tests. in generallized linear mixed modelslournal of the American
. . . . . Statistical Association88, 9-25.

This length _Of tlme_‘ (50 mmUteS) did not include COn_Brooks, S. P., B. J. T. Morgan, M. S. Ridout, and S. E. Pack (1997)
vergence diagnosis time. On the other hand, the E- Fjnite mixture models for proportionsBiometrics 53, 1097-
M algorithm only took a few seconds to finish a run. 1115,
The above computational related comments were mad&mpbell, J. G., C. Fraley, F. Murtagh, and A. E. Raftery (1997)
using computers with Pentium-100 CPU'’s, 32 mega- Linear flaw detection in woven textiles using models-based
bvtes RAM’s. and Windows95 operating svstems clustering. Pattern Recognition Letterd8, 1539-1548.

y ! . p_ . g sy " Celeux, G. and G. Govaert (1995) Gaussian parsimonious clustering

The E-M algorithm uses a traditional convergence odels. Pattern Recognition28, 781-793.
detecting method that can obtain convergence when th@mpster, A. P., N. M. Laird, and D. B. Rubin (1977) Maximum
E-M iterations’ absolute change is less than a certain likelihood from incomplete data via the E-M algorithm (with
small value. The method can be easily implemented discussion). Journal of the Royal Statistical Society, Ser, B
. . . . 39, 1-38.

and r,equ”es _no extra effort. G.IbbS sgmpillng reqUIreI'éollmann, D. A. and D. Lambert (1989) Generalizing logistic
special care in convergence diagnosis since a robust (ggression by nonparametric mixingournal of the American
method for detecting convergence is still lacking. statistical Association84, 295-300.
Several diagnostic methods for Gibbs sampling conGoodman, A. L. (1974) Exploratory latent structure analysis using

vergence have been proposed and discussed in many gitshzigfntifiable and unidentifiable modeldBiometrika 61,
papers. For a good summary, see the paper by Ka§cesdidi, K., H. S. Jagpal, and W. DeSarbo (1997) Finite-mixture

et al. (1998), who discussed many practical aspects of yctural equation models for response-based segmentation and
Gibbs sampling estimation and convergence. In our unobserved heterogeneityMarketing Sciencel6, 39-59.
study, we monitored the convergence statistics andass, R. E., B. P. Carlin, A. Gelman, and R. M. Neal (1998) Markov
obtained p|OtS using the computer software CODA chain Monte Carlo in practice: a roundtable discussidme

. American Statistician52, 93-100.
(Be,Stet al, 1997)' However, th_ls t_)ecar,ne eXtremelyMelton, B., K. Y. Liang, and A. E. Pulver (1994) Extended latent
difficult when the number of replications increased and |a55 approach to the study of familial/sporadic forms of a
this is a limitation of this paper. A more complete disease: its application to the study of the heterogeneity of
Monte Carlo study will be possible when a more robust schizophreniaGenetic Epidemiologyl1, 311-327.

diagnostic method for Gibbs sampling convergence i¥lukeriee, S., E. D. Feigelson, G. J. Babu, F. Murtagh, C. Fraley,
available and A. Rafery (1998) Three Types of Gamma Ray Bursts

L. . . Technical Report, Department of Astronomy and Astrophysics,
In addition to the two different sample sizes (300  pennsyivania State University, University Park, PA, U.S.A.

and 800), we also tried to use a sample size of 100 foMurtagh, F. and A. E. Raftery (1984) Fitting straight lines to point

data simulations and used the two methods to recover patterns.Pattern Recognition17, 479-483.

designed parameters. Interestingly, we found that botuér, & and K Steaden (1999) Fnie nixure modelng wit

methods had less stable parameter recove_ry behav'ﬁlﬁthén, B., H. Brown, S. Kaoo, C.C. \?ang, and B. Jo (199%) General

for a sample size of 100 than for sample sizes of 300 g;owth mixture modeling of latent trajectory classes: perspec-

or 800. An anonymous referee pointed out that in this tives and prospects. The Prevention Science and Methodology

case, prior information becomes more important, and Groups Meeting, Tempe, AZ, U.S.A. o _

the sensitivity analysis in the prior specification ha?'cﬁﬁ;:‘ngt'sigm- T;‘t‘lit gazgg’:; (Sléf;?st’i*cg';S:/'Ife'fj‘i"c“ia;"fzi;o“'Sh

to b_e examined. More stuc_hes are needed to explo_re 259, g y ”

the issues of small sample sizes and effects due to prig(,, v., m. Tan, and H. M. Kunter (1996) Random effects models

information for both methods. in latent class analysis for evaluating accuracy of diagnostic
Further research is needed in several areas. For tests. Biometrics 72, 797-810.

example, it may be possible to generate useful modeﬁ_piegelhalter, D., A. Thomas, N. Best, and W. Gilks (199ayesian

. Inference Using Gibbs Samplif@UG9, Ver. 0.5. MRC Bio-
by adding random effects to ELCA models. More statistics Unit, IPH, Cambridge, UK.

mve_StigationS on convergence problems W_here estimaypiegelnalter, D., A. Thomas, N. Best, and W. Gilks (199Bb)GS
tion involves small sample sizes are especially needed. Examples Ver 0.5, Vol. 1-2. Technical Report, MRC Biosta-

Statistical selection between different models may also tistics Unit, IPH, Cambridge, U.K.
be an important future research tOpiC. Tanner, M. A. (1996)Tools for Statistical Inferenc@&rd Ed. Springer-

-701-



C.C. Yanget al

Verlag, New York, NY, U.S.A. sampling and E-M algorithm. The 1997 IMS Asian and Pacific
Wang, P. and M. L. Puterman (1998) Mixed logistic regression  Regional Meeting, Academia Sinica, Taipei, Taiwan, R.O.C.
models. Journal of Agricultural, Biological and Environmental Yang, C. C. and B. Muthén (1997b) Finite mixture of generalized
Statistics 3, 1-26. linear models using Gibbs sampling and E-M algorithm. The
Wang, P., M. L. Puterman, |. Cockburn, and N. Le (1996) Mixed 1997 American Statistical Association (ASA) Joint Statistics
Poisson regression models with covariate dependent rates. Meeting (JSM), Anaheim, CA, U.S.A.
Biometrics 52, 381-400. Yang, |I. and M. P. Becker (1997) Latent variable modeling of
Yang, C. C. (1998)Finite Mixture Model Selection with Psycho- diagnostics accuracyBiometrics 53, 948-958.
metrics Ph.D. Dissertation. University of California, Los Angeles, Yung, Y. F. (1997) Finite mixtures in confirmatory factor-analysis
Los Angeles, CA, U.S.A. models. Psychometrika62, 297-330.
Yang, C. C. and B. Muthén (1997a) Latent class analyses using Gibbs

S EREREE-MEEMELZ BRESEBEZRRMERI

SEER* Bengt O. Muthéh 15"

‘B E A B R B AIBR AR AR FR
**Department of Education
Graduate School of Education & Information Studies
University of California, Los Angeles
Los Angeles, CA, U.S.A.
TREAEE

=

BRESENZEEREREMHRIENFSHMREIDPL - EMWR - RXEHDE - ENESZEHR D EEN
BEEZRMA - TR R BT ERBHNRRIDEFTRE T AR EFNAERERBSIVZERIAIERSE - ™XE
EEHHEMERRES KBGNASH T EREARURARSE » Rt AXLEREMERRESENERSE
ERFHMERT - ZRATRHEEFEMNRIVEIIGE - ERERIEENMRERER - KRN IREHER B
KRB S KRR BBERESENERZEERRFIERIA D -

-702-



