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ABSTRACT

Finite mixture multivariate generalized linear modeling has been shown to be an important analytic
tool for many research fields, for example, image recognition, astronomical data classification, biomedicine
diagnosis, and biological classification.  Recent statistical and computational advances have further
encouraged researchers to explore the modeling possibility using the Bayesian framework.  We compare
Expectation (E)-Maximization (M) algorithms for maximum likelihood estimation of classical statistics
with Gibbs sampling methods of Bayesian statistics in estimating finite mixture multivariate generalized
linear models.  A Monte Carlo study to compare the two methods is provided for practical reference.  We
also propose two finite mixture multivariate generalized linear models that can allow more flexibility in
modeling substantive applications.  The Longitudinal Study of American Youth (LSAY) data set is also
analyzed as a practical application.
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I. Introduction

The study of finite mixture multivariate general-
ized linear models is one of the significant research
topics which has drawn much attention from research-
ers in recent years for both statistical and substantive
reasons.  In particular, the significance of finite mixture
models has been re-emphasized recently in various
practical research areas, including image recognition
(Murtagh and Raftery, 1984; Campbell et al., 1997),
astronomical data classification (Celeux and Govaert,
1995; Mukerjee et al., 1998), biomedicine diagnosis
(Melton et al., 1994; Pickering and Forbes, 1984; Yang
and Becker, 1997) and biological classification (Wang
and Puterman, 1998).  The major reason for the popu-
larity of finite mixture modeling is that recent statis-
tical advances have made it feasible to fit finite mixture
models in a wide range of applications.  Thanks to these
statistical developments, these models now can deal
with continuous outcomes (Jedidi et al., 1997; Yung,

1997), discrete outcomes (Qu et al., 1996; Brooks et
al., 1997; Wang et al., 1996; Wang and Puterman,
1998), and combinations of continuous and discrete
outcomes (Muthén et al., 1996; Muthén and Shedden,
1999) with more realistic modeling assumptions.

The proposed finite mixture multivariate gener-
alized linear models can cover a wide range of over-
dispersed generalized linear models which can often
be seen in many substantive applications, for example,
longitudinal research or repeated measurement studies.
These overdispersed models are usually analyzed by
employing mixed-effects approaches (Breslow and
Clayton, 1993).  The mixed-effects approach assumes
an infinite mixture of fixed and random effects which
are included to account for the non-explainable random
effects or the extra-variations within the sample.
According to various distributional assumptions, the
random effects may result in beta-binomial distribu-
tions (e.g., extra-binomial regression models), nega-
tive binomial distributions (e.g., extra-Poisson regres-
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sion models), or non-tractable forms.  In contrast, finite
mixture models assume that a set of different distri-
butions is present in the outcome variables.  When these
distributions come from the same exponential family,
this is equivalent to saying that at least two different
sets of distributional (scale/position) parameters are in
the sample.  Therefore, statistical interpretations can
indicate that there are non-homogeneous classes or
groups in the sample.  Obviously, finite mixture models
are more appealing and interpretable than mixed-ef-
fects models in many applications.  More importantly,
these finite mixture models have important substantive
meaning in a broad range of research areas.

The popularity of finite mixture modeling can be
seen from the recent literature cited above; however,
relatively little research has focused on finite mixture
multivariate generalized linear models using Bayesian
theory.  Most of the papers in the literature have used
the maximum likelihood estimation theory and Expec-
tation (E)-Maximization (M) algorithms (Dempster et
al., 1977) for parameter estimation; therefore, most of
them were within the classical statistics framework.
One of the reasons for this is the computational com-
plexity of Bayesian finite mixture models.  Advances
modern statistical computation, e.g., Gibbs sampling
(Tanner, 1996), have helped solve these problems.  It
is very necessary to evaluate and compare the two esti-
mation methods (E-M algorithm and Gibbs sampling)
and provide a general reference for practical researchers.
One of the two aims of this paper is to compare the
E-M algorithms and Gibbs sampling from various
computational and statistical viewpoints based on Monte
Carlo studies.

The other major aim of this paper is to introduce
two relatively new finite mixture multivariate gener-
alized linear models.  We demonstrate the validity of
the two models using simulated and real data sets.  For
the purpose of simplicity, all the finite mixture models
discussed in this paper are limited to two different
distribution forms only although they can be easily
extended to more than two distributions.

The organization of this paper is as follows.  In
Section I, we explain the significance and properties
of finite mixture models and discuss the aims of this
paper.  In Section II, we review the finite mixture
generalized linear models.  Section III contains math-
ematical derivations of the two estimation methods for
a basic finite mixture model.  The model will be used
in later Monte Carlo studies to compare the two methods.
Two Bayesian finite mixture multivariate generalized
linear models are introduced in Section IV.  Section
V presents the designs and results of the estimation
method comparison and illustrates the examples using
analysis of simulated and real data sets using the two

Bayesian models.  In the last section, conclusions based
on comparisons between the different estimation
methods and suggestions for the use of the proposed
models are provided.

II. Finite Mixture Generalized Linear
Models

We review the recent literature on finite mixture
models for binomial, binary and Poisson outcomes in
this section.  The finite mixture models defined here
contain conditional probabilities (CP) for the outcome
probabilities, given that a certain distribution is true,
and mixing probabilities (MP) for the mixing rates of
the two distributions.  For a set of non-repeated Poisson
outcomes, Wang et al. (1996) proposed two finite
mixture models that can deal with data sets that have
or do not have independent variables.  The independent
variables are included as covariates for the conditional
probabilities.  They used an E-M algorithm combined
with a modified quasi-Newton algorithm in the esti-
mation procedures.

For a set of non-repeated binomial outcomes,
Follmann and Lambert (1989) suggested finite mixture
models that could handle binomial outcomes with or
without covariates (for conditional probability).  A
non-parametric estimation method was proposed in
their work.

One of the major classes of finite mixture models
consists of the so-called latent class analysis (LCA)
models.  Typical LCA models have been studied
for decades; see, for example, Goodman (1974),
Bartholomew (1987) and many other applications.
Recently, numerous researchers have proposed several
extended versions of LCA (ELCA) models.  For example,
Qu et al. (1996) proposed several ELCA models for
multivariate binary outcomes.  Specifically, they were
interested in studying the analyses of sensitivity and
specif ici ty of some medical diagnosis cri teria
(multivariate binary outcomes).  Their ELCA models
contain possible random effects, direct effects, or fixed
effects for conditional probabilities.  The parameter
estimation procedures employed in their paper were the
E-M algorithms and Gauss-Hermit quadrature approxi-
mations (if random effects are involved in the ELCA
models).  Wang and Puterman (1998) suggested a similar
ELCA model without random effects for a non-repeated
binomial data set.  In particular, covariates were for
both conditional probabilities and mixing probability
in this model.

It seems that several new models have been pro-
posed in the last few years; however, very few finite
mixture multivariate generalized linear models have
actually been applied using Bayesian theory.  Thanks
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to recent statistical computation advances, the above
and other useful models are also possible under the
Bayesian framework if Gibbs sampling is used.  We
shall provide a general guideline which researchers can
employ in using E-M algorithms or Gibbs sampling.

III. E-M Al gorithm and Gibbs Sam-
pling

The two competing estimation methods, the use
of E-M algorithm and Gibbs sampling, are outlined in
this section.  The main idea behind a generic E-M
algorithm is to implement an expectation to replace the
“missing” or “unobservable” data in a statistical model;
therefore, a complete data likelihood can be obtained
using the observed data.  By maximizing the complete
data likelihood function, the maximum likelihood
estimation (MLE) of the model parameters can be
obtained.  To simplify the comparison, we will use a
typical LCA model for both methods.  We will further
describe the major steps of the E-M algorithm in the
following.  Similar E-M algorithms were also used in
several studies, for example, those of Qu et al. (1996),
Wang and Puterman (1998), and Yang (1998).  Let
πkc=Pr(uik=1|C=c) be the conditional probability of the
kth binary response (k=1, …, t) being 1 given that C=c
(c=0, 1).  The probability that the ith subject will have
outcomes Ui=(ui1, …, uit)’ is given by

   g(U i) = λcg c(U i)Σ
c = 0

1
,

where λc=Pr(C=c) and gc(Ui)=Pr(Ui |C=c).
Given the latent classes, conditional independence

of t binary responses can be assumed.  Therefore,
gc(Ui) has the form

   g c(U i) = π kc
u ikΠ

k = 1

t
(1 – π kc)1 – u ik .

Thus, the likelihood function for each subject in this
model based on the conditional independence assump-
tion is given by

   g(U i) = λcΣ
c = 0

1
π kc

u ikΠ
k = 1

t
(1 – π kc)1 – u ik .

The posterior probability of C=c for the ith subject
with binary outcomes Ui is given by

   
h ci =

λcg c(U i)

λcg c(U i)Σ
c = 0

1
.

Replacing the class indicator C with its expectation
value (similar to a typical E-M algorithm for missing

data) and using a set of reasonable starting values, the
expectation (E-step) for C and the maximization (M-
step) for the conditional probabilities and class propor-
tions alternate until convergence occurs.

In the E-step, the posterior probabilities hci are
evaluated from current parameter estimates.  In the M-
step, the class proportions λc are updated as

   λc =
K c

K cΣ
c = 0

1
,

where

   K c = h ciΣ
i = 1

N
,  c=0, 1,

and the parameters in the component distributions are
updated as

   π kc =
S kc

K c

, c=0, 1, k=1, 2, 3, ..., t,

where

   S kc = h ciu ikΣ
i = 1

N
.

The E-M algorithm was programmed using the FOR-
TRAN 90 language.

Gibbs sampling has a much complicated estima-
tion procedure; see, e.g., Tanner (1996) and references
therein.  Therefore, only specific mechanisms for the
LCA model will be provided here.  The main objective
of Gibbs sampling is to synthesize the complicated joint
distribution from randomly sampled conditional distri-
butions because such complicated joint distributions
can be very difficult to integrate analytically.  For a
more complete introduction of LCA by using Gibbs
sampling, please see Yang and Muthén (1997a, 1997b).
The method employed in this paper to obtain the para-
meter estimates is to average the random samples ac-
quired from Gibbs sampling procedures.

We will describe the major Gibbs sampling setups
for estimating our finite mixture models in the following.
Using the same notations as for the E-M algorithm, the
conditional function f (uik|ci) has a Bernoulli distribution;
however, instead of being latent class indicators as in
the previous method, ci are now distributed as in a
Bernoulli distribution.  Both Bernoulli distributions
have conjugate Dirichlet prior distributions.  Following
are the equations for the Bayesian LCA model:

uik|ci~Bernoulli(πkc),

where πkc~Dirichlet(α1,α2),
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and

ci~Bernoulli(λ), where λ~Dirichlet(α1,α2).

We select non-informative priors for the parameters in
the LCA model by setting α1 and α2 equal to 1.  Non-
informative priors are chosen to ensure that the E-M
algorithm and Gibbs sampling are used on the same
platforms; therefore, the difference recorded in this
study is only due to estimation algorithms themselves,
not to the priors.  The posteriors were obtained and
parameter estimations were performed using the BUGS
(Spiegelhalter et al., 1995a, 1995b) computer software.

IV. New Bayesian Models

In this section, we will describe two finite mixture
multivariate generalized linear models using the theory
of Bayesian statistics.  The first model is an extended
latent class analysis model for repeated measurements
with two sets of independent variables.  The indepen-
dent variables are used as covariates for mixing and
conditional probabilities.  This model is described based
on Bayesian statistics in the following.  Assume that
yik is the kth binary response for subject i , and that,
Ci are the latent class indicators.  πikc are the conditional
probabilities for yik given Ci; that is,

yik|Ci~Bernoulli(πikc),

where

logit(πikc)=β0kc+β1kcw1i+β2kcw2i+… +βpkcwpi.

Moreover, in an LCA model, Ci have a Bernoulli distribu-
tion with parameter λ:

Ci~Bernoulli(λ).

In other words, λ is the mixing rate of the two distribu-
tions.  In an ELCA model, we can further assume that
each subject’s mixing probability is to be predicted by
some covariates.  This can also be described in the form
of an equation as follows:

logit(λi)=α0+α1x1i+α2x2i+…+αmxmi.

Further, we select conjugate prior distributions for
parameters; that is,

β~Normal(µβ,σβ
2) and α~Normal(µα,σα

2),

where µα, σα, µβ, and σβ are the constant parameters
for their corresponding prior distributions.

Similarly, we can extend the previous ELCA model
to analyze multivariate Poisson outcomes.  The follow-
ing equation describes the second model:

yik|ci~Poisson(κikc),

where

log(κikc)=β0kc+β1kcw1i+β2kcw2i+…+βpkcwpi.

Moreover,

Ci~Bernoulli(λi),

where

logit(λi)=α0+α1x1i+α2x2i+…+αmxmi.

Again, we select conjugate prior distributions for para-
meters; that is,

β~Normal(µβ,σβ
2) and α~Normal(µα,σα

2),

where µα, σα, µβ, and σβ are the constant parameters
for their corresponding prior distributions.  The two
Bayesian finite mixture multivariate generalized linear
models will be discussed and applied in Section V.

V.Monte Carlo and Real Data Illus-
trations

To compare the two estimation methods and show
the plausibility of the proposed Bayesian models, brief
simulation studies and real data analyses were con-
ducted.

1. Comparison of the Methods

Monte Carlo comparisons of the E-M algorithms
and Gibbs sampling in estimating the finite mixture
models are conducted using the typical LCA model.
The design of this study was as follows.  Two sample
sizes, N=300 and N=800, were used.  In the LCA model,
we used a four-item-test with two latent classes model.
The “true” values for generating simulated data sets
are listed in Table 1.

Because there is still a lack of a robust diagnostic
method for detecting convergence, we had to consider
several methods for a single replication in order to
determine whether a Gibbs sampling estimation would
converge.  Nevertheless, we found, from practical
experience, that a Gibbs sampling chain with discard-
ing of 5,000 burn-in samples and recording of every
5th of 25,000 samples could usually satisfy most of the
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diagnostic methods employed in this paper.  We con-
ducted twenty replications for data simulation and
estimation using both methods and summarize the results
in Table 1.

For each replication and method, we used three
sets of starting values: one set contained “true values”,
another set was one estimated standard deviation below
the true values, and the last set was one estimated
standard deviation above the true values.  We selected
the solution that was the closest to the true values as
our final solution; therefore, we could avoid local modes
that might trap the estimation methods and give less
accurate results.  The practical strategy of trying dif-
ferent initial values to avoid local modes has been
useful for estimating finite mixture models in many
studies (Muthén and Shedden, 1999; Spiegelhalter et
al., 1995b).

2. Monte Carlo Illustration

In this section, we will demonstrate the Bayesian
plausibility of the finite mixture multivariate Poisson
model by analyzing artificial data sets.  The finite
mixture multivariate Poisson model contains one con-
tinuous covariate (W) for predicting conditional prob-
abilities (κ ikc) and one continuous covariate (X) for
predicting mixing probabilities (λi).  The values of the
intercepts (α0,β0kc) and the slopes (α1,β1kc) for W and
X used to generate Poisson data sets are listed in Table
2.

Similarly, we conducted twenty replications for
this model and used the same rules for selecting initial
values.  Because of our success with Bayesian LCA
models as described in Section V.1, we selected a
sample size of 300 for data simulation.  The same
numbers of updating samples for Gibbs sampling as
described in Section V.1 were used in estimating the
model.  We summarize the parameter estimation results

in Table 2.  The results confirm that the Bayesian model
is plausible in practice and can be reliably estimated.

3. Real Data Illustration

The National Science Foundation of the United
States approved a project called Longitudinal Study of
American Youth (LSAY) in 1986 to measure American
youth’s mathematics and science achievement.  We
selected five mathematics test items and some back-
ground variables from the LSAY project to demonstrate

Table 1. LCA Model with N=300 and N=800, Averages of 20 Replications

N=300 N=800

E-M Gibbs E-M Gibbs E-M Gibbs E-M Gibbs
   True Sampling Sampling Sampling Sampling

Estimates S. D. Estimates S. D.

Pc=1 0.6 0.6042 0.6008 0.0452 0.0452 0.6029 0.6012 0.0282 0.0279
π10 0.1419 0.1545 0.1637 0.0461 0.0455 0.1396 0.1436 0.0280 0.0279
π20 0.1419 0.1311 0.1405 0.0448 0.0446 0.1386 0.1427 0.0280 0.0278
π30 0.7311 0.7409 0.7328 0.0548 0.0544 0.7268 0.7237 0.0342 0.0339
π40 0.7311 0.7483 0.7420 0.0553 0.0547 0.7343 0.7311 0.0346 0.0345
π11 0.7311 0.7133 0.7093 0.0415 0.0416 0.7317 0.7310 0.0258 0.0257
π21 0.7311 0.7259 0.7234 0.0417 0.0414 0.7307 0.7302 0.0258 0.0257
π31 0.1419 0.1444 0.1503 0.0348 0.0348 0.1419 0.1431 0.0211 0.0211
π41 0.1419 0.1361 0.1390 0.0343 0.0343 0.1354 0.1365 0.0207 0.0208

Table 2. Estimation Results for Mixture Poisson, N=300, Averages
of 20 Replications

True Mean S.D. 2.5% 97.5% Median

P(C=1) 0.386 0.3427 0.0568 0.2319 0.4544 0.3423
α0 -0.7 -0.7801 0.3843 -1.6080 -0.1042 -0.7584
α1 1.8 1.5960 0.4138 0.9184 2.5320 1.5510
β010 -0.5 -0.3769 0.1063 -0.5894 -0.1698 -0.3762
β020 -0.5 -0.5407 0.1129 -0.7640 -0.3202 -0.5416
β030 -0.8 -0.8191 0.1228 -1.0710 -0.5874 -0.8168
β040 -0.8 -0.6448 0.1132 -0.8665 -0.4247 -0.6458
β050 -0.8 -0.8360 0.1224 -1.0860 -0.6036 -0.8336
β011 -0.8 -1.3550 0.4984 -2.4320 -0.5265 -1.2940
β021 -0.8 -1.1500 0.5173 -2.4220 -0.3509 -1.0940
β031 -1 -1.0890 0.4809 -2.1700 -0.2783 -1.0440
β041 -1 -1.8750 0.6786 -3.5110 -0.8282 -1.7730
β051 -1 -0.6943 0.3620 -1.4780 -0.0520 -0.6748
β110 0.5 0.5138 0.0769 0.3613 0.6613 0.5141
β120 0.5 0.6386 0.1149 0.4140 0.8632 0.6406
β130 0.3 0.1619 0.1120 -0.0599 0.3813 0.1618
β140 0.3 0.3184 0.0972 0.1238 0.5032 0.3212
β150 0.3 0.3230 0.1357 0.0567 0.5841 0.3230
β111 0.8 0.8994 0.3097 0.3698 1.5660 0.8737
β121 0.8 0.8683 0.4194 0.0514 1.7630 0.8634
β131 1.2 1.5150 0.2973 0.9781 2.1490 1.5030
β141 1.2 1.6160 0.3350 1.0440 2.3760 1.5810
β151 1.2 1.1110 0.2225 0.6833 1.5520 1.1090

Note: 2.5% and 97.5% are the lower and upper highest density
regions (H.D.R.), respectively.
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the proposed ELCA model.  There were 685 Grade
Seven students in our analysis, and the descriptive
statistics are listed in Table 3.

We used subjects’ gender, mother’s education and
home science resources as covariates for the latent class
indicators (mixing probabilities).  The latent class status
can be interpreted as students’ true latent mastery ability
in mathematics.  Furthermore, students’ math attitude
and math anxiety are predictors for conditional
probabilities.  We then have the following expression:

yik|Ci~Bernoulli(πikc),

where i=1, …, 685, k=1, …, 5, c=0, 1,

logit(πikc)=β0kc+β1cSMHAT1i+β2cSMHAX2i

and β~Normal(µβ,σβ
2).

To simplify the interpretations, we constraint slopes for
math attitude and anxiety equal across the test items
and set intercepts estimated freely between different
items.  The estimated results are listed in Table 4.

Moreover,

Ci~Bernoulli(λi),

where

logit(λi)=α0+α1GENDER1i+α2MOTHED2i

+α2HSCRE3i,

and

α~Normal(µα,σα
2).

We used non-informative priors for parameters; i.e.,
we let µα=µβ=0 and σα=σβ=100.  Further, a Gibbs

sampling chain with discarding of 10,000 burn-in
samples and recording of every 10th of 50,000 samples
was used for this example.  The Gibbs sampling chain
satisfied the convergence diagnostic tests.

Some interesting results are revealed by our study
of this model and are summarized as follows.  The
inferences from mother’s education and home science
resources to students’ latent mastery status are found
to be statistically significant while the inferences from
gender have no significant effects.  Details of the
parameter estimates can be found in Table 4.

VI. Conclusion

Our primary results show that Gibbs sampling
gives more accurate estimates and smaller standard
deviations than the E-M algorithm does although the
differences are small in our examples.  Nevertheless,

Table 3. Descriptive Statistics of the LSAY Data Set

Variable Mean Std. Dev. Minimum Maximum Label

CK201101 0.79 0.41 0 1 GIVE 90,000,000 IN SC
CK202501 0.59 0.49 0 1 CONVERT .425 TO PERCE
CK206701 0.7 0.46 0 1 AT 6 DOZ./MONTH, COOK
CK286501 0.54 0.5 0 1 FIND THE QUOTIENT: −1
CK286502 0.53 0.5 0 1 FIND THE QUOTIENT: +1
GENDER 0.47 0.5 0 1 STUDENT  GENDER
HSCRE 3.86 1.38 0 6 HOME SCIENCE RESOURCE
MOTHED 2.73 1.11 1 5 COMPOSITE MOTHER’S ED
SMHAT 11.79 2.48 2.25 16 STUDENT MATH ATTITUDE
SMHAX 2.27 1.69 0 8 STUDENT MATH ANXIETY

Note: Number of valid observations=685.

Table 4.  Bayesian ELCA Model for the LSAY Data Set

Estimates S. D. 2.5%b 97.5%b

Pc=1 0.4813 0.0501 0.3831 0.5795
π10 0.7449 0.0253 0.6942 0.7919
π20 0.4497 0.0322 0.3851 0.5109
π30 0.6046 0.0301 0.5429 0.6621
π40 0.1960 0.0488 0.0989 0.2870
π50 0.1799 0.0425 0.0958 0.2629
π11 0.8364 0.0240 0.7869 0.8809
π21 0.7482 0.0309 0.6885 0.8076
π31 0.8029 0.0267 0.7494 0.8543
π41 0.9154 0.0398 0.8388 0.9944
π51 0.8977 0.0464 0.8112 0.9965
α0 −0.0775a 0.2161 −0.5024 0.3416
α1 −0.2640a 0.1936 −0.6477 0.1047
α2 0.3700 0.0886 0.2016 0.5465
α3 0.1714 0.0716 0.0319 0.3128
β010 1.0790 0.1342 0.8220 1.3410
β020 −0.2034a 0.1314 −0.4685 0.0437
β030 0.4281 0.1267 0.1730 0.6762
β040 −1.8390 6.6970 −2.2160 −0.9128
β050 −1.5510 0.3150 −2.2510 −1.0320
β011 1.6640 0.1786 1.3240 2.0240
β021 1.1110 0.1683 0.8019 1.4560
β031 1.4330 0.1732 1.1090 1.7890
β041 2.6150 0.8970 1.6750 5.2010
β051 2.4310 1.0360 1.4730 5.7250
β10 0.0439a 0.0344 −0.0243 0.1119
β11 0.1206 0.0516 0.0122 0.2172
β20 0.0575a 0.0479 −0.0382 0.1495
β21 0.1122a 0.0812 −0.0458 0.2753

Notes:α0: intercept; α1: slope for Gender; α2: slope for Mother’s
Education; α3: slope for Home Science Resources; β0xx:
Intercepts; β1x: slopes for Math Attitude; β2x: slopes for Math
Anxiety

a Non-significant.
b 2.5% and 97.5% are the lower and upper highest density regions
(H.D.R.), respectively.
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a comparison (Table 1) was made given that Gibbs
sampling has non-informative priors.  Practical expe-
rience shows that Gibbs sampling may perform much
better when informative priors are available.

For the LCA model considered in this paper, we
found that Gibbs sampling took much more time than
the E-M algorithm did.  For example, Gibbs sampling
needed about 50 minutes to complete a 5k/25k run in
order to pass most of the convergence diagnostic tests.
This length of time (50 minutes) did not include con-
vergence diagnosis time.  On the other hand, the E-
M algorithm only took a few seconds to finish a run.
The above computational related comments were made
using computers with Pentium-100 CPU’s, 32 mega-
bytes RAM’s, and Windows95 operating systems.

The E-M algorithm uses a traditional convergence
detecting method that can obtain convergence when the
E-M iterations’ absolute change is less than a certain
small value.  The method can be easily implemented
and requires no extra effort.  Gibbs sampling requires
special care in convergence diagnosis since a robust
method for detecting convergence is still lacking.
Several diagnostic methods for Gibbs sampling con-
vergence have been proposed and discussed in many
papers.  For a good summary, see the paper by Kass
et al. (1998), who discussed many practical aspects of
Gibbs sampling estimation and convergence.  In our
study, we monitored the convergence statistics and
obtained plots using the computer software CODA
(Best et al., 1997).  However, this became extremely
difficult when the number of replications increased and
this is a limitation of this paper.  A more complete
Monte Carlo study will be possible when a more robust
diagnostic method for Gibbs sampling convergence is
available.

In addition to the two different sample sizes (300
and 800), we also tried to use a sample size of 100 for
data simulations and used the two methods to recover
designed parameters.  Interestingly, we found that both
methods had less stable parameter recovery behavior
for a sample size of 100 than for sample sizes of 300
or 800.  An anonymous referee pointed out that in this
case, prior information becomes more important, and
the sensitivity analysis in the prior specification has
to be examined.  More studies are needed to explore
the issues of small sample sizes and effects due to prior
information for both methods.

Further research is needed in several areas.  For
example, it may be possible to generate useful models
by adding random effects to ELCA models.  More
investigations on convergence problems where estima-
tion involves small sample sizes are especially needed.
Statistical selection between different models may also
be an important future research topic.
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