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ABSTRACT

This paper discusses the large signal performance of BiMOS low-voltage analog multipliers. Fourier-series
approximations are obtained for the transfer characteristics of the basic building blocks, such as the BiMOS folded
Gilbert multiplier cell, the squaring multiplier made from two cross-coupled emitter-coupled pairs and driven by
an MOS quadritail, and the tripler made from cross-coupled emitter-coupled pairs and driven by an MOS quarter-
sguare multiplier. Using the Fourier-series approximations of the transfer functions of these basic building blocks,
closed-form expressions are obtained for the amplitudes of the harmonics and intermodulation products at the out-
put of these analog multipliers when excited by multisinusoidal input signals. Using these expressions, comparison
between the large signal performance of these analog multipliers can be made and the parameters required for a

predetermined performance can be determined.
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. Introduction

At present there is growing interest in designing
low-voltage analog functional elements using the BiIMOS
technology. Because of their wide spread use in analog
applications, multipliers are among the many functional
circuits which can be realized using this technology.

With all the bipolar transistors assumed identical and
their basewidth modulation ingored, and with al the MOS
transistors assumed identical and operating in the satura-
tion region and ignoring their body effect and channel-
length modulation, the use of the square-law model for
MOS transistors yields the expression of Eq. (1) for the
differential output current of the BiMOS folded Gilbert
multiplier cell, shownin Fig. 1 (Kimura, 1994).

y = f(2) tanh(x), (1a)
where
f(2)=2z2-2%; |7<1, (1b)
f(2)=sgnz [221, (10)

wherey = Al /100, X = V1/2Vr, 2= V,y/ JTO/_,g, Op, isthe
dc common-base current gain factor for a pnp transistor,
V5 = KT/q is the thermal voltage, k is the Boltzman’s con-
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Fig. 1. BiIMOS folded Gilbert multiplier cell.

stant, T is the absolute temperature in degrees Kelvin, q is
the charge of an electron, 3= UC,,/2(WIL) is the transcon-
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Fig. 2. Cross-coupled, emitter-coupled pairs driven by a MOS quadritail
cell.

ductance parameter of the MOS transistor with effective
surface mobility ¢ and gate capacitance per unit area C,,
W isthe gate width, and L is the gate length. Also, the dif-
ferential output current of the cross-coupled emitter-cou-
pled pairs driven by an MOS quadritail cell, as shown in
Fig 2, can be expressed as follows (Kimura, 1994):

y =g(2) tanh(x), (2a)
where
_15, 2

9(2) =%(Zz —3+2\MW); \E <|l2<2, (20)

92 =1 222, (2d)

wherey = Al /(0 lo), O, isthe dc common-base current
gain factor for an npn transistor. Finaly, the differentia
output current of the cross-coupled emitter-coupled pairs
driven by a MOS quarter-square cell, as shown in Fig. 3,
can be expressed as follows (Kimura, 1995):

y= hizp) tanh(x), (32
Nz p) =225 22+ P2 420 <, (30)

n(z P) = ¢ (1229 ~(3+(2 +|p)” ~4(2 4P)

0/3-2(7 +|p)* +6(Z|d)san(zp)));

22+ p? + [z 2% 22% +p? —g\zp\ (30)

1-p? 5 .1
h(z, p) = py1- p?syn(2) tanh(x); Z* + p* =,
(3d)

where p = Vg/ 'l“_o/_B' Under small signal conditions, with
the three normalized input voltages x, z and p restricted,
respectively, tox < 1/2, z< /2 and p < 1/2, Egs. (1) — (3)
can be approximated, using the first term of the Taylor-
series expansion of the tanh and square-root functions, by

yO.2x (4)

y0 ®)
and

y O2xzp. (6)

Equations (4) — (6) show that, under small signal condi-
tions, the three multipliers in Figs. 1 — 3 will perform the
required multiplication. However, in their present forms,
Egs. (1) — (3) can not be used to predict the performance
of the three multipliers under large signal conditions. This
can be attributed, largely, to the lack of a single continu-
ous function describing the transfer function of the multi-
plier and stretching over the useful range of its operation,
in addition to the involvement of the tanh and square-root
functions. Consequenctly, the tolerable nonlinearity and
the dynamic range of the three multipliers can not be
analytically defined.

ATout

Q1 Q2 Q3 oaj—]
Vi
I

= E“ IE w—it §

Fig. 3. Cross-coupled, emitter-coupled pairs driven by a MOS quarter-
square multiplier.
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The main objective of this paper is, therefore, to pre-
sent a general analysis for predicting the nonlinear perfor-
mance of BiIMOS multipliers under large signal condi-
tions. Using accurate models for the differential output
current transfer functions, closed-form expressions are
obtained for the amplitudes of the output products from a
BiMOS multiplier with large-amplitude sinusoidal input
signals. Using these expressions, a comparison between
the different BiIMOS multipliers can be made, and the
optimum parameters required to meet a predetermined
level of circuit performance can be determined.

[I. Fourier-Series Approximation

Here we propose to approximate the functions
tanh(x), f(2), g(2) and h(zw) of the three multipliers in
Figs. 1 — 3 using the Fourier-series model of Eq. (7):

_ NQO mr O . [N
f(fp)—ao+nglgncosD§¢D+bnsnD§¢%

-B B
Cep<—. (7
5 S5 (7)

Equation (7) implies that the function f(¢) can be repre-
sented by a Fourier-series in the variable @ with periodici-
ty, equal to 2B, chosen such that the working range of the
variable @ is an appropriate segment around zero. The
parameters a,, a, and b,, n =1, 2, ..., N, can be obtained
using the procedure described by Abuelma atti (1993).
Since, tanh(x), f(2) and h(z,p) are odd functions, a, = 0, n
=0,1,2,...,N. Tables1 and 2 show typical values of B,

Table 1. Values of the Parameters B and b;, for the Functions tanh(x) and
f(2

Bone1 tanh(x) f(2
B=80 B=80
by 1.19595 1.25214
bs 0.25269 0.36397
bs 0.07189 0.16284
b, 0.02075 0.06998
bg 0.00607 0.02159
by 0.00172 -0.00144
bis 0.00053 -0.00907
bis 0.00013 -0.00829
by7 0.00006 -0.00425
big 0.00000 -0.00030
byy 0.00001 0.00196
bys 0.00000 0.00232
Bys 0.00000 0.00144
by7 0.00000 0.00021
Bog 0.00000 -0.00067
bay 0.00000 -0.00091
bas 0.00000 -0.00062
bas 0.00000 -0.00012

Note: ay=a,=by,=0,n=1,2, ..., N.

Table 2. Values of the Parameters B and b, for the Function h(z,p)

Bans1 h(zp) h(zp) h(zp) h(zp)
p=0.1 p=0.2 p=03 p=04
B=8.0 B=8.0 B=8.0 B=8.0
b, 0.17729 0.351889 0.520936 0.681303
by 0.05312 0.105420 0.155803 0.202857
bg 0.02536 0.050350 0.074256 0.096156
b, 0.01223 0.024326 0.035919 0.046656
by 0.00476 0.009578 0.014425 0.019520
by 0.00050 0.001194 0.002372 0.004577
b1z —0.00164 —0.002994  -0.003583  —0.002928
b5 —0.00234 —0.004358  —0.005565  —0.005845
b7 -0.00212 -0.003964 -0.005168 —0.006014
byg —-0.00143 -0.002682  -0.003616  —0.004641
by —0.00061 -0.001183  -0.001784  —0.002568
by3 0.000095 0.0000824 —0.000223  —0.000470
bos 0.000548 0.0008821  0.0008029  0.0010993
b,7 0.0007168  0.0011738  0.0012442  0.0017793
bog 0.0006446  0.0010522  0.0011979  0.0015199
bs; 0.0004181  0.0006837  0.0008372  0.0006154
b33 0.0001380  0.0002449  0.0003551 —0.000411
bas -0.000109 -0.000124 -0.000080 —0.0010403

Note: a,=a,=b,,=0,n=1,2, ..., N.

a,, b, for the functions tanh(x), f(z) and h(z,p) in Egs. (1)
and (3). Since, g(2) is an even function, b, =0, n =1, 2,
..., N. Table 3 shows typical values of the parameters a,,
a,n=12, ..., N, for thefunction g(2).

From Table 2, it appears that the parameters b, n =
1,35, ... of the function h(z,p) are, themselves, functions
of p. Variations of the parametersb,, n=1, 3, 5, 7, with p
are amost linear and can, therefore, be approximated by

bn(p) D owp, (8

where &; = 1.7729, &3 = 0.5312, J5 = 0.2536 and &; =
0.1223. The variations of the parameters b,, n > 7 can, if
required, be fitted to polynomials as functions of p.

Using the parameters listed in Tables 1 — 3, calcula
tions were performed, and the results are shown in Figs. 4
— 7 together with the transfer functions of Egs. (1) — (3).
From Figs. 4 — 7, it appears that the approximation of Eq.
(7) accurately represents the transfer functions in Egs. (1)
— (3) with a relative root-mean-square (RRMS) error of
0.00064 for the transfer function tanh(x); 0.00144 for the
transfer function f(2) in Eg. (1); 0.017 for the transfer
function g(2) in Eq. (2); and 0.0037 for the transfer func-
tion f(zp) in Eqg. (3) with p = 0.1, 0.0018 with p = 0.2,
0.0019, with p = 0.3 and 0.0049 with p = 0.4.

lll. Large Signal Analysis of the Multi-
pliers

If a nonlinear device, with a transfer characteristic
modelled by Eq. (7), is excited by a multisinusoidal input
signal of the form
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» :Approximated using Eg. (3)
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Fig. 4. The transfer function tanh(x). tanh(x) is an odd function.
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:Exact
» :Approximated using Eq. (3)
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Normalized input, z

Fig. 5. The transfer function f(2) in Eq. (1). f(2) isan odd function.

K ) K B
P =D+ 5 Desinat, O, +Y O <=, (9)
k=1 k=1 2

where ®, may represent an externally applied dc bias volt-
age, then by combining Eq. (7) with Eqg. (9), the normal-
ized output current can be obtained as

N UhrO K . l
f(t)=a, + cos +Y ®, sinwyt
(t)=a, nzlan EE%DO kgl k K %

N . OhrQ K . 1
+n§lbnsngggbo+gl¢ksnwkt% (20)

Using the trigonometric identities:

10
f(2)

05

:Exact
:Approximated using Eqg. (3)

1 2 3 4
Normalized input, z

Fig. 6. The transfer function g(2) in Eqg. (2). g(2) is an even function.
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Fig. 7. The transfer function h(z,p) in Eq. (3).
sin(@sind) =23 Jp.4(8)sin(2l +1)¢,
=0

cos(fsind) = J,(6) +2§ J,(6) cos2I ¢,
1=0

it is easy to show that the amplitude of an output compo-
K

nent of frequency A, where A, is a positive or nega-
k=1

tive integer or zero, can be given by
7Ty O gn 7
Fowtolag). = 22 %ncos °|]+b“stEq)°%

O

K
III'I 13, q)kD for kZl\)\k\ =even

(11a)

k\DB
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and

N
- nrr . [ . [nm
it ao, =28 B0 Oo SN 0o f

O

El_l ‘]\Ak\ 0B quD

K
for 3 A/ = odd,
k=1
(11b)
V\}/<here Jac(6) is the Bessel function of order [A]and

> [Afis the order of the normalized output current com-
k=1

ponent. Therefore, the amplitude of a normalized output
current component of frequency a, can be given by

Fl—zzgo cosm (O D anst”TCD %
n=1

D’UT

D @ 0p 5,7, 0 (12)

PO ol Pk
k#p

the amplitude of a normalized output mth harmonic cur-
rent component of frequency may, can be given by

hmt
Fp=2 " o Jrb, cp%
m HZEanCOS sm 0g Po

[WT g DWT
mOg pDIjI Jo ®
k#p

0 kD for m=even

(13a)

and

Fn _ZZ cost og—ansjngq—;d)o%

AL DI'I J EnBlT g for m=odd,

"Og pD =1
k¢p

(13b)
and the amplitude of an intermodulation product of fre-
quency ra, —qas and order = r + ¢ can be given by

F(rq)_zz EancosDrﬂ ot bn st”TCD %

M, 08 - hm,. 0O
mrDBq)DJqDBCDqDQE Jo BCDkD
rq

forr+q=ever
(14a)

or
F(,q)—Zzgo cosDq o -2, S nD”TcD %

K
thr, [0
ED’DB @ g %Ekrll Pog o
k#r,q

forr +q=add.

(14b)

In a similar way, the amplitude of an intermodulation
product of any order can be obtained using Eq. (11).

From Egs. (13) and (14), one can see that the ampli-
tudes of odd-order products can be minimized through
proper selection of the parameter ®,. Thus, proper selec-
tion of the dc bias voltage can yield minimum values of
the amplitudes of the odd-order products.

Now if the input to the multiplier shown in Fig. 1 is
composed of the two normalized signals

X(t) = X sinaw;t (15)
and
Z(t) = Z sinwyt, (16)

then, using Eqg. (14b), the amplitude of the normalized
output current of frequency w; = w, can be expressed as

ZU

zzbnal xDz budiip Zg (D)

wl+wz

where the sunscript f means the parameters by, of the func-
tion f(2).

For sufficiently small values of X and Z such that
(N"B)X << 1 and (MTWB)Z << 1, the Bessdl functions
Ji((n77B)X) and J;((m77B)Z) can be approximated by the
first term of their Taylor series, that is, Ji(¢) U @2, and
Eq. (17) reducesto

Y., al et ON

Erwigzrge oo

From Table 1, we get znb = 2.54219 and Z nbys =
3.57058; thus, Eg. (18) can be reduced to

Yeorseo, J0.699XZ. (19)
This is in excellent agreement with 0.707XZ, obtainable

from Eq. (4).
In a similar way, the amplitude of the normalized
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output current component of frequency w; + 2w, at the
output of the multiplier shown in Fig. 2 can be expressed
as

IZWT D am 7TZD (20)

22 bndy Elnz domgJ2 0

a)1+2w2

where the subscript g means the parameters a,,, of the
function g(2). For sufficiently small values of X and Z
such that (M77B)Z << 1, the Besseal function J,((m77B)Z)
can be approximated by the first term of its Taylor series,
that is, J,(¢) 0 ¢#/8, and Eq. (20) reduces to

1D7TD3D

o nbn%nz a2 (21

From Tables 1 and 3, we get Z nb, = 2.54219 and Z

m=1

Yor 26, U gOB0

ma,, = —6.10129; thus, Eq. (21) reduces to
Yoo, 10.117XZ2. (22)

This is in excellent agreement with 0.125XZ?, obtainable
from Eq. (5).

Finally, the amplitude of the normalized output cur-
rent component of frequency w; = w, at the output of the
multiplier shown in Fig. 3 can be expressed as

DngD

M
2zan1 5 X2, ey 2 (@

&’1*'(01

Table 3. Values of the Parameters B and a,, a,, for the Function g(2)

92
aon B=80
a, = 0.74158
2 20.435104
ay —0.248765
a —0.077377
ag 0.0051283
o 0.0129087
a, 0.0004342
Ay —-0.001357
A 0.0031416
A 0.0029340
a0 ~0.000751
Ao —-0.001876
Qo -0.000343
s 0.0003589
a0s -0.000298
azp -0.000421
2 0.0002816
A 0.0005344
a0s 0.0000809

Note: a1 =b,=0,n=0,1,2, ..., N.

where the subscript h means the parameters b, of the
function h(z,p). In this case, the parameters by, are them-
selves functions of the third input p(t). Thus, if the third
input p(t) can be expressed as

p(t) = P sinwxyt, (24)
then, combining Egs. (8), (23) and (24), the normalized

output current component of frequency w;, + w, = w; a
the output of the multiplier shown in Fig. 3 can be ex-

pressed as
Dmn
%ﬂz B
(29)

DN
Yortatan = Paz bn‘]l
=1
For sufficiently small values of X, Z, Eq. (25) reducesto

1P
Yot ons ca O 4gg§a2nbn%nzlm6 p. (26)

N M
From Tables 1 and 2, we get ) nb, = 2.54219 and >
n=1 m=1

md,, = 5.36; thus, Eq. (26) reduces to
Yoopseonte, 110.5248XZP. (27)

This is in excellent agreement with 0.5XZP, obtainable
from Eq. (6).

IV. Simulation Results

The multiplier circuits shown in Figs. 1 and 2 were

L0 - mmmmm oo oo 1
0.54
0-
-0.54
-1.0i ---------------------------------------------------------------------
Os C2ms 4 6ms 8ms 10ms
= (i(r1)-i(r12))/1(i1) Time

Fig. 8. Normalized output waveform obtained from Fig. 1 with V, = 70
mV, V, =14V, f; =11kHz and f, = 1.0 kHz.
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OHz 10KHz 2.0KHz 30KHz 4.0KHz 5.0KHz 6.0KHz 7.0KHz
= (i(r11)-i(r12))/1(i1)

Frequency

Fig. 9. Frequency spectrum of the waveform shown in Fig. 8.

BOOM T =~~~ ==~~~ oo noesooeooeoooooooooo ,
400m4;
400m—§
OOM -~ ===~ === e oo ]

0s 2ms 4ms
° (i(r11)-i(r12))/1(i1)

Time

Fig. 10. Normalized output waveform obtained from Fig. 2 with V; =
100mV, V,=2.0V, f;=1.1kHzandf, = 1.0 kHz.

simulated using the evaluation version of the PSPICE cir-
cuit-simulation program. The parameters used were I¢ =
14 fA, B = 100 and Vs = 100 V for the npn and the pnp
transistors, and Vi, = 2V, K, = 1 mA/V? and y = 0.3 V12
for the NMOS transistors. The supply voltage Vec =5V,
the current I, = 1 mA, and the individual load resistor R, =
| kQ. The results obtained are shown in Figs. 8 — 14.

Figure 8 shows a typical output waveform obtained
from the multiplier circuit shown in Fig. 1 with w; = 2200
Trad/sec, w, = 2000 rrad/sec and X = Z = 1.4, which cor-
responds to V, = 70 mV and V, = 1.4 V. Figure 9 shows
the frequency spectrum of the output waveform shown in
Fig. 8.

Figure 10 shows atypical output waveform obtained
from the multiplier circuit shown in Fig. 2 with w; = 2200

300mypzesmrers o T T T
400m1§
300m
200m—§ .

100m4 - -

OLA.AA} PP —
OHz _10KHz _2.0KHz
e ((riD-i(r12)(D)

3.0KHz 4.0KHz 5.0KHz 6.0KHz

Frequency

Fig. 11. Frequency spectrum of the waveform shown in Fig. 10.

1.2
g
1
g
g 1o0f
&
3
=3
£
&
v 0.8
3
3
% 0.6
K] /
N /
T o4k / ——: Calculated using Eq.(17)
s ’ ~~——-: Calculated using Eq.(19)

e : Simulated
0.2
1 1 1 1
0.8 1.6 2.4 3.2

Normalized input amplitudes, x=z

Fig. 12. Calculated and simulated results obtained using the multiplier
showninFig. 1.

Trad/sec, @, = 2000 rrad/sec and X = Z = 2.0, which cor-
respondsto VV; = 100 mV and V, = 2.0 V. Figure 11 shows
the frequency spectrum of the output waveform shown in
Fig. 10.

It appears from Figs. 8 — 11 that the multiplier cir-
cuits shown in Figs. 1 and 2 can successfully perform
multiplication under relatively large signals, and that their
operation is not limited to small signals as mentioned by
Kimura (1994).

Figures 12 — 14 show the variation of the normalized
output amplitudes with the normalized inputs. Also shown
are the calculated results obtained using Egs. (17) and (19)
for the multiplier circuit shown in Fig. 1, using Egs. (20)
and (22) for the multiplier circuit shown in Fig. 2 and
using Egs. (25) and (27) for the multiplier circuit shownin
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0.2 -

——: Calculated using Eq.(20)
® ————: Calculated using Eq.(22)
e : Simulated

Normalized amplitude of frequency 2w,—®,

I : 1 1 1 1
0.4 0.8 1.2 1.6 2.0

Normalized input amplitudes, x=z

Fig. 13. Calculated and simulated results obtained using the multiplier
showninFig. 2.

Fig. 3.

From Figs. 12 and 13 it appears that the simulation
results are in fairly good agreement with the calculated
results obtained using the theory presented here. Also, it
appears from Figs. 12 — 14 that Egs. (19), (22) and (27)
can be used to predict the multiplier performance accu-
rately for valuesof X=2Z=P < 0.4.

V. Conclusion

This paper has presented large signal analysis for the
BiMOS low-voltage analog multiplier circuits. By approx-
imating the nonlinear transfer characteristics of the basic
building blocks, such as the folded Gilbert multiplier cell,
the sguaring multiplier made from two cross-coupled
emitter-coupled pairs and driven by a MOS quadritail, and
the tripler made from cross-coupled emitter-coupled pairs
and driven by a MOS quarter-square multiplier, the output
spectrum of the analog multipliers can be obtained. In
general, the spectrum computation performed using these
expressions requires the use of the ordinary Bessel func-

1.2

0.8

0.6

Normalized amplitude of frequency ;tw,twm,

0.4

: Calculated using Eq.(25)
———-: Calculated using Eq.(27)

1 1 1 1 1

0.4 0.8 1.2 1.6 2.0 2.4 2.8

Normalized input amplitudes, x=z=p

Fig. 14. Calculated results obtained using the multiplier shown in Fig. 3.

tions. In contrast with the comments made by Kimura
(1994), the results obtained in this paper clearly show that
these BiIMOS analog multipliers can be successfully used
for large signal aswell as small signal multiplication.

It is worth mentioning here that the results presented
in this paper were obtained based on the assumption that
the basic building blocks are memoryless. This may be a
reasonable assumption at relatively low frequencies. At
high frequencies, however, the parasitic effects of the tran-
sistors must be taken into consideration. Thiswill result in
frequency-dependent nonlinear transfer characteristics.
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