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ABSTRACT

Radiometric characteristics of the land surface nonlinearly depend on the surface state, so it is in
general a great challenge to recover the surface state using mathematically-based schemes. Neural networks
are known for their capability in dealing with nonlinear fittings. We investigate the use of a Dynamic
Learning Neural Network (DLNN) in the retrieval of land surface parameters from radiometric signatures.
Two case studies are considered. The first study is based on predictions from a 60-day summer dry-down
simulation of the Land Surface Process/Radiobrightness (LSP/R) model, which manages land-air inter-
actions and microwave radiative transfer in order to furnish temperature and moisture profiles of the
vegetation and soil, and the corresponding brightness temperatures of the terrain. For the purpose of this
investigation, the second study is based on LSP/R model predictions, which are used for model validation
against a field campaign. Both cases utilize about 10% of the predictions from the LSP/R model to train
the DLNN, and another 10% or so of the predictions as the ground truth to evaluate the DLNN retrievals.
The training data include horizontally- and vertically-polarized brightnesses at 1.4, 19, and 37 GHz as
the inputs of the DLNN, and the corresponding temperatures and moisture contents of the soil and canopy
as the outputs. In the first study, we find that root mean square (rms) errors are less than 1% between
DLNN retrievals and ground truth for all of the four surface parameters of interest. The rms errors are
about 0.42 Kelvin for soil temperature (uppermost 5 mm), 0.11% for soil moisture (by volume), 0.034
Kelvin for canopy temperature, and 0.008 k§/im the second study, the rms errors are slightly greater
but within a reasonable range of less than 2% for all of four parameters.

Key Words: soil moisture, land surface process, radiobrightness, neural network

l. Introduction solution.
Thermal infrared (TIR) remote sensing represents

Land and air are coupled through exchanges obne way of detecting soil moisture and surface energy
moisture and energy, which are important boundaryluxes from space. In general, multispectral measure-
conditions of atmospheric circulation models (Smithments from aircraft and satellite platforms are used to
et al, 1994; Lianget al, 1994). Land-surface param- relate surface radiant temperature and vegetation frac-
eters govern these exchanges through their dominanti®n to surface wetness and energy fluxes (Price, 1990;
on the partioning of incoming insolation into latent andMoran et al., 1994; Diaket al,, 1995; Carlsoret al.,
sensible heat. These parameters include the temperb995; Gillies and Carlson, 1995; Gilles al,, 1997).
tures and moisture contents of the soil and canopyThis approach performs poorly during cloudy and rainy
Among them, soil moisture is most important. Sinceevents, and over vegetated areas because the propaga-
soil moisture is highly variable in spatial and temporaltion path tends to become opaque to TIR signals.
domains (Bellet al., 1980), observations of its distri- Microwave remote sensing provides the second
bution must be made constantly to maintain good qualityay to measure soil moisture from space. Compared
of products from numerical weather prediction modelswith TIR, microwaves are capable of penetrating clouds
The remote sensing technique seems to be the onhnd to some extent, rain and vegetation (Ulabwl,
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1981). Many studies have been conducted to invesvhere the subscrifk represents the soil or canop¥,
tigate retrievals of soil moisture using microwaves oveis the total water mass per unit volume, k§/i, is
the past two decades (Schmuggeal, 1986; Jackson the total heat content per unit volume, 3/mis the
and Schmugge, 1989; Ahmed, 1995; Wigneetral,  time, s, Q_ is the vector moisture (vapor and liquid)
1995). Retrievals are possible when they primarilyflux density, kg/m-s, and Q,, is the vector heat flux
rely on the sensitivity of brightness temperatures talensity, J/m&s. At the land-air interface, heat flux
soil moisture. Nevertheless, the highly nonlinearucludes components of radiant heat, sensible and latent
relationship between soil moisture and radiometricheat, and heat exchanges due to rainfall. Moisture flux
observations makes it less feasible to infer the formeaiccounts for transfer due to evaporation and
from the latter using a mathematically-based metranspiration, and to precipitation and run-off. Within
thod. the soil, heat conduction, transfer of latent heat by
Neural networks are well-known for their capa-means of vapor movement, and transfer of sensible heat
bility in solving nonlinear mappings. For example,in vapor and liquid comprises the total heat flux, and
they have been used in a broad range of studies, suktfuid and vapor flux densities account for the total
as in monitoring rainfall (Xiao and Chandrasekar, 1997)moisture flux density. These fluxes include the effect
clouds (Bankert and Aha, 1996), tornados (Marzbamwf transpiration on the moisture flux and on the energy
and Stumpf, 1996), ship waves (Fiteh al, 1991), flux within the root zone. Many of the parameters that
snow parameters (Tsared al., 1992), surface winds govern moisture and energy transfer are functions of
speeds (Thiriaet al.,, 1993; Stogrynet al.,, 1994; the temperature and liquid water content of the soil and
Krasnopolskyet al., 1995; Cheret al., 1999), relative canopy. The nonlinear constitutive relations, the
humidity (Cabrera-Mercader and Staelin, 1995), andoundary conditions and forcings, and the numerical
forest change (Gopal and Woodcock, 1996), in (actively}olutions of temperature and moisture to Egs. (1) and
retrieving surface parameters (Chetnal.,, 1995), and (2) were presented by Lioat al. (1999b).
in conducting image classification (Kanellopoules The R module manages radiative transfer within
al., 1992; Bischofet al, 1992; Haraet al., 1994). the canopy and absorption from the canopy to estimate
Recently, we demonstrated a neural network approaderrain radiobrightness. The R module follows the
(Liou et al.,1999a) that, based on dry-down simula-approach of England and Galantowicz (1995). The
tions of the Land Surface Process/Radiobrightness (LSEBbmbined soil and canopy radiobrightness is
R) model, the L-band brightness temperature had an
impact on radiometric sensing of land surface param-  Tb=Tg(1-Ry(1))e ™ +T; o(1-€ ) (1+Ry()e ™),
eters over a prairie grassland. In this paper, we further 3
investigate the neural approach by using more realis-
tically radiometric signatures of the terrain to infer landwhereT;, is the effective emitting temperature of the

surface parameters for practical use. soil (Liou and England, 1996, 1998a), R, is the
Fresnel reflectivity of the moist soil for polarization

1. The LSP/R Model and Its Valida- p, To is the optical thickness of the canopy,s the
tion cosine of 58, the incidence angle of Special Sensor

Microwave/Imager (SSM/I), and.. is the effective
The LSP/R model consists of two modules, aremitting temperature of the canopy, K.

LSP module and an R module. It was developed over A series of Radiobrightness Energy Balance
a period of several years (Liou and England, 1996Experiments (REBEX) were conducted to validate the
1998a, 1998b; Liowet al, 1999b). The LSP module LSP/R model (Kim and England, 1996a, 1996b;
that treats energy and moisture exchanges between talantowicz, 1995). REBEX-0 was conducted in a
land and atmosphere computes temperature and moigrass-covered research plot at the University of
ture profiles of the soil and canopy. Energy and moistur®lichigan’s Matthaei Botanical Gardens in Ann Arbor,

transfer in the soil and canopy involves solving theMl, U.S.A., from August 19, 1992 to September 8, 1992
1-dimensional form of the following coupled equa-(Kim and England, 1996a). The soil at the site was

tions: a sandy loam, and the grass column density was from
3to 3.8 kg/M. REBEX-1 was a 7-month fall and winter

0Xm K -_0.0 1 experiment in grassland near Sioux Falls, South Dakota,

o Qi 1) during 1992-1993 (Galantowicz, 1995). The soil at the

REBEX-1 site was a silty clay loam, and the grass
column density was 3.7 kghin REBEX-3 was a 1-year
experiment in tussock tundra on the Alaskan North

X, « _
ot :_D'thkv (2)
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Table 1. AD and SD Based upon Comparisons between Measure

and Predicted Soil Temperatures at 2, 4, 8, 16, 32, and € £ > T ERNLINT..
cm Depths, Heat Flux at a 2 cm Depth, and Brightnesse g sco
at 19.35 GHz £
Parameters AD SD = E
Canopy Temp, K 1.1 1.9
Soil Temp at 2 cm, K 1.9 2.1
Soil Temp at 4 cm, K 1.8 2.0
Soil Temp at 8 cm, K 1.6 1.7
Soil Temp at 16 cm, K 1.3 1.5
Soil Temp at 32 cm, K 1.1 1.2
Soil Temp at 64 cm, K 0.6 0.8
Heat Flux at 2 cm, W/f 4.6 6.9
Ths at 19.35 GHz, K -0.06 1.1

Slope during 1994-1995 (Kim and England, 1996b) ..f
REBEX-4, a joint project with the Atmospheric Envi-
ronment Service of Canada, was a 4-month growin -.:-
season experiment in grass and bare soil at the REBE 3 " T
1 site during the summer of 1996.

We have validated the LSP/R model by forcing * °*
the model with observed weather and down-wellin¢ ...

o.3e

o2z

.30

Sait misture contert, %

¢
X ; B
hguhulmlmimlmhu L

radiation during REBEX-1 and comparing model pre " B -
dlCtIOﬂS Of temperatures, heat f|UX, and radlobrlghtn68|3|g 1. (a) Canopy temperature’ (b) soil temperature, (C) canopy
with the corresponding REBEX-1 observations (Liou water content, and (d) soil moisture content from ground truth
et al, 1999b). Observations of a 14-day period from and from DLNN retrievals.

day 287 to day 300 of REBEX-1 were used in the

validation. During the period, the grass was green and

there was no snow cover. The average of the diffecconcatenating all the input and hidden nodes in the
ences (AD) between the model predictions and REBEXnetwork, and the long output weight matvikis formed

1 observations, and the corresponding standard devifly concatenating all the weights that connected to each
tions (SD) are listed iffable1. In general, the model output node. This modification allows us to apply the
predictions agree with the corresponding measuredynamic Kalman filtering algorithm (Brown and Hwang,

values very well. 1983) to adjust the network weights with a recursive

minimum least square error, which is very suitable for

lIl. The Dynamic Learning Neural computer implementation (Haykin, 1994). The network,
Networ{ (DLNN) i.e., the DLNN, bears features such as fast learning and

built-in optimization of a weighting function at little
DLNN is utilized to manage a nonlinear mappingeXpense of computer storage. The fast learning feature
relation between the radiobrightnesses and the surfagéems from the fact that updating of the weights is
parameters. Based on a polynomial basis functioaccomplished in a global manner while avoiding back-
expansion, a multilayer perceptron network is modified®ropagation, which usually makes the learning process
so that at the output layer, the functional form is lin-very lengthy. DLNN was presented by Tzeepal.
earized while the hidden layers remain nonlinear. Thé1994).
weighting functions in each layer are cascaded to form
a long vector, through which the outputs and inputs artV. Simulations and Retrievals
related (Tzenget al, 1994), i.e.,
Two case studies were conducted to evaluate the
y=Wx, (4) feasibility of retrieving surface parameters from
radiobrightnesses using DLNN trained by the LSP/R
where the output vectagrcontains all the output nodes model. Results from the first study (dry-down
of a network, the long input vectoris formed by simulation) are shown iR : (1) canopy temperature,
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Fig. 2. Differences in (a) canopy temperature, (b) soil temperatureFig. 3. (a) Canopy temperature, (b) soil temperature, (c) canopy
(c) canopy water content, and (d) soil moisture content between water content, and (d) soil moisture content from ground truth
DLNN retrievals and the corresponding ground truth. and from DLNN retrievals.

(2) soil temperature, (3) canopy water content, and (4ground truth considerably well. As shown fng. 4,
soil moisture content from ground truth and from DLNNdifferences between the retrievals and corresponding
retrievals. In general, the retrievals fit the ground truthlground truth are smad less than 0.1 Kelvin for canopy
very well. For example, it is obvious that there aregemperature, less than 1.0 Kelvin for soil temperature
no observable discrepancies between the retrieve@ppermost 5 mm), less than 0.1 kdfior canopy water
canopy temperature and the corresponding referenceontent, and less than 1.3 % for soil moisture content.
shows the differences in (1) canopy The corresponding rms errors are 0.025 Kelvin for
temperature, (2) soil temperature, (3) canopy watecanopy temperature, 0.29 Kelvin for soil temperature,
content, and (4) soil moisture content between DLNND.024 kg/ni for canopy water content, and 0.32% for
retrievals and ground truth. We find that the maximunsoil moisture content. That is, the DLNN retrievals
differences between DLNN retrievals and ground truthare all more than 98% accurate.
are 0.07 Kelvin for canopy temperature, 1.5 Kelvins As shown in Fig. 3, the inferred canopy tempera-
for soil temperature (uppermost 5 mm), 0.02 kgfor  tures appear to match the corresponding ground truth
canopy water content, and 0.3% for soil moisturebetter than do the other three parameters. Our inter-
content. The corresponding rms errors are 0.034 Kelvipretation includes three observations: (1) emissions at
for canopy temperature, 0.42 Kelvin for soil temperaturel9 and 37 GHz are primarily from the canopynore
0.008 kg/m for canopy water content, and 0.11% forthan approximately 90% for the former and 95% for
soil moisture content. That is, the DLNN retrievalsthe latter (Liouet al, 1999b); (2) brightnesses at 19
are all more than 99% accurate. and 37 GHz are almost linearly related to the physical
Results from the second study (field campaigntemperature of the canopy; and (3) brightnesses at
are shown in . (1) canopy temperature, (2) soil 1.4, 19, and 37 GHz depend on the canopy moisture,
temperature, (3) canopy water content, and (4) sosdoil temperature and moisture content with a higher
moisture content from ground truth and from DLNNdegree of nonlinearity than they do on the canopy
retrievals. The DLNN retrievals generally mimic thetemperature. The total effect of 1 to 3 permits DLNN
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candidate for solving problems with characteristics that
are not clearcut or clearly defined, like the problem
recently noted concerning the effect of scaling on the
interpretability of mixed pixel radiobrightnesses (Liou
{ etal, 1998). It was found that 19.35 GHz brightnesses
= ; - - i = : contain information about the canopy column density
; and its spatial variability in a sub-pixel. We are in-
vestigating the use of a Fuzzy DLNN to retrieve such
{ information.

Acknowledgment

This work has been supported by the NSC, R.O.C., under
grants NSC 86-2111-M-008-035-T and NSC 87-2111-M-008-021.

: . References

Ahmed, N. U. (1995) Estimating soil moisture from 6.6 GHz dual
i i ’ : - - i polarization, and/or satellite derived vegetation indient. J.
FEET 5, Remote Sensing.6, 687-708.
Bankert, R. L. and D. W. Aha (1996) Improvement to a neural
I | { network cloud classiferd. Appl. Meteorol. 35, 2036-2039.
Bell, K. R., B. J. Blanchard, T. J. Schmugge, and M. W. Witczak
' 4 (1980) Analysis of surface moisture variations within large-field
i ; ' sites.Water Resour. Resl16, 796-810.
i Bischof, H., W. Schneider, and A. J. Pinz (1992) Multispectral
D 1 L e ¥ classification of Landsat images using neural netwoH&EE
Trans. Geosci. Remote Sensid®, 482-489.
Fig. 4. Differences in (a) canopy temperature, (b) soil temperaturegrown, R. G. and P. Y. C. Hwang (198Bjtroduction to Random
(c) canopy water content, and (d) soil moisture content between Signals and Applied Kalman Filterip®nd Ed. Wiley, New
DLNN retrievals and the corresponding ground truth. York, NY, U.S.A.
Cabrera-Mercader, C. R. and D. H. Staelin (1995) Passive microwave
relative humidity retrievals using feedforward neural networks.
IEEE Trans. Geosci. Remote Sensig, 1324-1328.

to infer the canopy temperature better than the Othed'arlson, T. N., R. R. Gillies, and T. J. Schmugge (1995) An inter-

three parameters. pretation of water content and fractional vegetation coigric.
Gor. Meteorol, 77, 191-205.
V. Discussion and Conclusions Chen, K. S., W. L. Kao, and Y. C. Tzeng (1995) Retrieval of surface

parameters using dynamic learning neural netwémk.J. Remote

. - Sensing 16, 801-809.
This paper has demonstrated that DLNN infers th%hen, K. S., Y. C. Tzeng, and P. T. Chen (1999) Retrieval of ocean

surface Param?ters from radipbrightnesses relat-ively winds from satellite scatterometer by a neural netwtEEE
well. This implies that DLNN is capable of resolving  Trans. Geosci. Remote Sensifgj, 247-256.

the nonlinear relationships between surface parametePik, G. R., R. M. Rabin, K. P. Gallo, and C. M. U. Neale (1995)
and radiobrightnesses. In addition, most of the uncer- Regional-scale comparisons of vegetation and soil wetness with

o . e f ties f tellite and in-situ observations.
tainties or errors produced in the retrieving process may . °°® €% Erg\igr sog.agy e and st observations

pri_marily b(_? from the training data. Hgnce, if one isgngland, A. W. and J. F. Galantowicz (1995) Observed and modeled
using a reliable LSP/R model to provide a complete radiobrightness of prairie grass in early fall. 1995 IEEE Int'l
data set, the proposed retrieval approach can be very Geosci. Remote Sensing Symflorence, Italy.

powerful. Fitch, J. P., S. K. Lehman, F. U. Dowla, S. Y. Lu, E. M. Johanson,

Further studv in two directions will be valuable and D. M. Goodman (1991) Ship wave detection procedure using

. y . . : conjugate gradient trained neural netwdikEE Trans. Geosci.
They are improvement and validation of the LSP/R  remote sensing9, 718-726.
model, and with the issue of how to properly utilizeGalantowicz, J. F. (1995Field Data Report for the First
neural networks. The former would permit the Radiobrightness Energy Balance Experiment (REBEX-1), Octo-
LSP/R model to simulate a wider range of problems ber 1992-April 1993, SIOL‘JX,. Falls, South Dakotdechnical

. . . Report RL-913, UM Radiation Laboratory, Ann Arbor, MI,

that are more likely to occur in reality. The latter would ;"'
aim to effectively |mplement neural network; to dealgijjies, R. R. and T. N. Carlson (1995) Thermal remote sensing of
with problems of interest based upon their charac- surface soil water content with partial vegetation cover for

teristics. For example, DLNN may not be the best incorporation into climate models. Appl. Meteorol.34, 745-

-515-



Y.A. Liou et al.

756. Sci, 33, 259-265.

Gillies, R. R., J. Cui, T. N. Carlson, W. P. Kustas, and K. S. Humes.iou, Y. A., Y. C. Tzeng, and K. S. Chen (1999a) A neural network
(1997) Verification of a method for obtaining surface soil water approach to radiometric sensing of land surface parameters.
content and energy fluxes from remote measurements of NDVI IEEE Trans. Geosci. Remote Sensiimy press).
and surface radiant temperatuhet. J. Remote Sen¢in press). Liou, Y. A., J. Galantowicz, and A. W. England (1999b) A land

Gopal, S. and C. Woodcock (1996) Remote sensing of forest change surface process/radiobrightness model with coupled heat and

using artificial neural networkdEEE Trans. Geosci. Remote moisture transport for prairie grasslan&EE Trans. Geosci.
Sensing 34, 398-404. Remote Sensin@in press).

Hara, Y., R. G. Atkins, S. H. Yueh, R. T. Shin, and J. A. Kong (1994Marzban, C. and G. J. Stumpf (1996) Neural network for tornado
Application of neural networks to radar image classification. prediction based on Doppler radar-derived attributésAppl.
IEEE Trans. Geosci. Remote Sensig, 100-109. Meteorol, 35, 617-626.

Haykin, S. (1994Neural NetworksPrentice-Hall, Englewood Cliffs, Moran, M. S., T. R. Clarke, Y. Inoue, and A. Vidal (1994) Estimating
NJ, U.S.A. crop water deficit using the relation between surface-air tem-

Jackson, T. J. and T. J. Schmugge (1989) Passive microwave remote perature and spectral vegetation indékemote Sens. Envirgn.
sensing system for soil moisture: some supporting research. 49, 246-263.

IEEE Trans. Geosci. Rem. SeGE-27, 225-235. Price, J. C. (1990) Using spatial context in satellite data to infer

Kanellopoulos, A., A. Varfis, G. G. Wilkinson, and J. Megier (1992) regional scale evapotranspiratidEEE Trans. Geosci. Remote
Land-cover discrimination in SPOT HRV imagery using an Sens, 28, 940-948.
artificial neural networka 20-class experimenint. J. Remote  Schmugge, T. J., P. E. O'Neill, and J. R. Wang (1986) Passive
Sensing 13, 917-924. microwave soil moisture researclEEE Trans. Geosci. Rem.

Kim, E. J. and A. W. England (1996&)ield Data Report for Sen, GE-24, 12-22.

Radiobrightness Energy Balance Experiment 0 (REBEX-0)Smith, C. B., M. N. Lakhtakia, W. J. Capehart, and T. N. Carlson
August, 1992-September, 1993: UM Matthaei Botanical Gardens  (1994) Initialization of soil-water content in regional-scale
Technical Report RL-916, UM Radiation Laboratory, Ann Arbor, atmospheric prediction modelBull. Amer. Meteor. Sog75,

MI, U.S.A. 585-593.

Kim, E. J. and A. W. England (1996)eld Data Report for the Stogryn, A. P., C. T. Butler, and T. J. Bartolac (1994) Ocean surface
Third Radiobrightness Energy Balance Experiment (REBEX-3),  wind retrievals from special sensor microwave imager data with
September 1994 September 1995, Wet Acidic Tundra on the neural networksJ. Geophys. Res99, 981-984.

Alaskan North SlopeTechnical Report RL-918, UM Radiation Thiria, S., C. Mejia, F. Badran, and M. Crepon (1993) A neural
Laboratory, Ann Arbor, MI, U.S.A. network approach for modeling nonlinear transfer functions:

Krasnopolsky, V. M., L. C. Breaker, and W. H. Gemmill (1995) A application for wind retrieval from spaceborn scatterometer data.
neural network as a nonlinear transfer function model for retriev-  J. Geophys. Res98, 22827-22847.
ing surface wind speeds from the special sensor microwavé&sang, L., Z. Chen, S. Oh, R. J. Marks, II, and A. T. C. Chang (1992)
imager.J. Geophys. Res100, 11033-11045. Inversion of snow parameters from passive microwave remote

Liang, X., D. P. Lettenmaier, E. F. Wood, and S. J. Burges (1994) sensing measurement by a neural network trained with a multiple
A simple hydrologically based model of land surface water and  scattering modellEEE Trans. Geosci. Remote Sensigf,

energy fluxes for general circulation models.Geophys. Res. 1015-1024.

99, 14415-14428. Tzeng, Y. C., K. S. Chen, W. L. Kao, and A. K. Fung (1994) A
Liou, Y. A. and A. W. England (1996) Annual temperature and dynamic learning neural network for remote sensing applications.
radiobrightness signatures for bare solSEE Trans. Geosci. IEEE Trans. on Geosci. and Remote Sens8fy 1096-1102.
Remote Sensin@4, 981-990. Ulaby, F. T., R. K. Moore, and A. K. Fung (198d)crowave Remote

Liou, Y. A. and A. W. England (1998a) A land surface process/  Sensing, Active and Passjvéol. |I. Artech House, Norwood,
radiobrightness model with coupled heat and moisture transport MA, U.S.A.
in soil. IEEE Trans. Geosci. Remote Sensifi§, 273-286. Wigneron, J. P., A. Chanzy, J. C. Calvet, and N. Bruguier (1995)
Liou, Y. A. and A. W. England (1998b) A land surface process/ A simple algorithm to retrieve soil moisture and vegetation
radiobrightness model with coupled heat and moisture transport biomass using passive microwave measurements over crop fields.

for freezing soilsIEEE Trans. Geosci. Remote Sensidg, 669- Remote Sens. Envirqrbl, 331-341.

677. Xiao, R. and V. Chandrasekar (1997) Development of a neural
Liou, Y. A., E. J. Kim, and A. W. England (1998) Radiobrightness network based algorithm for rainfall estimation from radar

of prairie soil and grassland during dry-down simulatid®adio observations|IEEE Trans. Geosci. Remote Sergb, 160-172.

—-516-



NN in Radiometric Studies of Land Surface

e RN S R R S W 2 T

BlEiz™ H#HBE™ BRIRLT

"B SE R R B K T BRI S
THEIBRS IGEMNSKRETIEN

i =

R EEAE ER MR R SRR Fl WS AIAEERSSERAEREERENGE &
AT IERR A Pk E o HMERAEUERFRIESURENS » AR EASESE BEHEAR (Dynamic Learning
Neural Network; DLNN) RIS st EH RSB 25 » HEAMEREE - F—EEERE—ERiBE 52 (Land
Surface Process/Radiobrightness; LSP/R) #3X B Zho0 Xz IR E R o LSP/REX EIEt R ARBXL HIE
ARMEEEE - AEHEYETEAEBRINE R RTER - BTHEAN  FZARARRKRRFLSP/REX HiEEE
HoMEBEEZED  AWESZHHEEEREAKINEEDLNN » B4 ESZHHERIEE “wE” (ground truth) %
FEDLNNE &8 o g TR E14 » 19837 GHzEH KT 5 B E/EDLNNE N » DIRHEHEEDE T ENER
SHEERE o HMEBR > £E—EAEZED  MEDINNEEZHEYE TIEMNRBLHEEERHAFRELNR
% Hep s Hid 13 (FESmm) B042 K> it HiE&kE (BEALE) B011%  HikEwREE0034 K- ¥
REMEKER008 kg/m? o FEE _EEZEP - NEHHFIREMRFEM » AMEBE—B/DMR2OI\SEEER o
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