
Proc. Natl. Sci. Counc. ROC(A)
Vol. 23, No. 1, 1999. pp. 100-110

A Mobile-Support-Station-Based Causal Multicast
Algorithm in Mobile Computing Environment

CHAO-PING LI AND TING-LU HUANG†

Department of Computer Science and Information Engineering
National Chiao-Tung University

Hsinchu, Taiwan, R.O.C.

(Received December 22, 1997; Accepted May 8, 1998)

ABSTRACT

Causal multicast is required for several distributed applications. In a mobile computing environment,
it is especially important for applications that involve human interactions from several locations, for
example, teleconferencing. In this paper, we present a causal multicast algorithm in which the message
overhead is independent of the number of mobile hosts, and which can handle connections/disconnections
easily. It also handles dynamically changing groups. The algorithm is suitable for a mobile computing
environment.

Key Words: causal multicast, causal delivery, mobile computing, distributed algorithms

distributed systems (Jalote, 1994). In a mobile com-
puting environment, causal ordering is especially im-
portant for applications that involve human interac-
tions from several locations. Some of the major appli-
cations of distributed mobile systems in which causal
ordering is useful are teleconferencing, stock trading,
collaborative applications etc. (Alagar and Venkatesan,
1994; Prakash et al., 1997).

There are several algorithms that implement causal
ordering for distributed systems with static hosts only
(Birman and Joseph, 1987; Birman et al., 1991; Prakash
et al., 1997; Raynal et al., 1991; Schiper et al., 1989),
and there are some for a mobile computing environment
(Alagar and Venkatesan, 1994; Prakash et al., 1997).
To enforce causal ordering, the algorithms require that
extra information be appended to each message, thus
incurring a message space overhead. For each of the
algorithms designed for stationary distributed systems,
the message space overhead is at least O(N2), where
N is the number of processes in the system. Hence,
the protocols are not scalable and, thus, are not suitable
for a mobile computing environment due to the limi-
tations of the available bandwidth and energy con-
sumption.

In a mobile computing environment, one of the
algorithms proposed by Alagar and Venkatesan (1994)
requires only O(nMSS

2) message overhead, where
nMSS is the number of mobile support stations

I. Introduction

Miniaturization of computers and the rapidly ex-
panding technology of cellular communications has
made it possible for mobile users to access information
anywhere and anytime. These technologies come
together in the form of mobile computing. Many of
the distributed algorithms designed for distributed
systems with fixed hosts only cannot be directly used
in a mobile computing environment because of the
change in physical network connectivity, the resource
constraints of mobile hosts and the limited bandwidth
of a wireless link. This has led to a considerable amount
of research into adapting algorithms designed for con-
ventional distributed systems to make them suitable for
a mobile computing environment. In this paper, we
consider the problem of providing an important com-
munication support, causal multicasting messages, for
mobile hosts.

Consider two messages m and m′ sent to the same
destination such that the sending of m “happens before”
the sending of m′. Causal ordering of message delivery
is obeyed if m is delivered before m′ is delivered.
Techniques for the causal ordering of messages are
useful in developing distributed algorithms and may
simplify the algorithms themselves (Birman and Jo-
seph, 1987). Causal ordering has been regarded as
an important building block for constructing reliable

†To whom all correspondence should be addressed.

− 100 −

A CM Algorithm in Mobile System

− 101 −

(MSSs). Nevertheless, the handoff procedure of the
algorithm needs O(nMSS) message exchanges to handle
mobility. Yen et al. (1996) presented a compromise
algorithm with O(nMSS×nMH) message overhead but a
less complicated handoff procedure, where nMH is the
number of mobile hosts (MHs). However, both of these
algorithms assume that there is an underlying routing
protocol (Bhagwat and Perkins, 1993; Ioannidis et al.,
1991) for routing a message from an MH to another
MH. As far as multicasting is concerned, the function-
ality of multicast thus can be achieved only by means
of multiple unicasts, which results in poor utilization
of the network bandwidth (Acharya and Badrinath,
1993). A multicast protocol for a mobile environment
has been presented by Acharya and Badrinath (1993).
However, this protocol does not enforce causal order-
ing. The algorithm proposed by Prakash et al. (1997)
adopts the multicast algorithm presented by Acharya
and Badrinath (1993) and appends only direct depen-
dence information to each message to enforce causal
multicast. However, its overhead is O(nMH

2). In sum-
mary, the existing protocols are not scalable in a mobile
environment. Hence, there is a need for an implemen-
tation of scalable causal multicast in a mobile envi-
ronment.

The rest of the paper is organized as follows.
Section II contains a description of the system model
and a formal definition of causal multicast. The al-
gorithm is presented in Section III and its proof of
correctness in Section IV. Section V compares the
performance of our algorithm with that of related works.
Finally, a conclusion is drawn in Section VI.

II. System Model and Definition

1. System Model

We use the model proposed in Badrinath et al.
(1993) as the underlying execution environment of
our protocol (Fig. 1). It also has been considered in
many discussions on algorithms for mobile comput-
ing environments (Alagar and Venkatesan, 1994;
Badrinath et al., 1993, 1994; Prakash et al., 1997;
Yen et al., 1996). The system consists of a set of
MHs and fixed hosts. An MH is a host that can move
while retaining its connectivity to the network. A
fixed host is a host whose location does not change
with time. A fixed host can also be an MSS. An
MSS has the necessary infrastructure to communicate
directly with MHs. The number of MHs, denoted
as nMH, is large whereas that of MSSs, denoted as
nMSS, is relatively small. Thus, we assume that
nMH>>nMSS.

The geographical area that an MSS covers is called

a cell. All MHs that are located within a cell of an
MSS are considered to be local to the MSS. An MH
may belong to at most one cell at any time. It can
directly communicate with an MSS through a wireless
channel only if it is local to the MSS. To send a message
from one MH, MHi, to another MH, MHj, MHi first
sends the message to its local MSS over the wireless
network. The MSS then forwards the message to the
local MSS of MHj, which will then forward the message
to MHj over the wireless network.

MSSs connect to one-another using wired chan-
nels. The MSSs and the wired channels constitute the
static network. The overall network architecture thus
consists of a wired network of fixed hosts and low-
bandwidth wireless networks, each comprising a MSS
and the MHs local to the cell. We assume that a logical
channel exists between each pair of MSSs. The logical
channel is assumed to be reliable but need not to be
FIFO (First In First Out) whereas the wireless channel
between an MSS and each of its MH is assumed to be
reliable and FIFO.

When an MH moves from one cell to another, a
handoff procedure is executed, whereby the algorithm-
specific data structure on behalf of the MH maintained
by the previous MSS is transferred to the new MSS.
This procedure will be described in more detail in
Subsection 2. In rare circumstances, it is possible for
an MH to move again to another new cell before the
handoff procedure is completed due to the combination
of the small sized cells of MSSs and fast movements
of MHs. In this paper, we will not discuss delivery
of a message to an MH in such circumstances. There-
fore, the system model requires that the static part of
the network possesses sufficient host processing ability
and communication speed, so that after an MH enters
its present cell and before it subsequently leaves the

Fig. 1. Mobile environment architecture.

C.P. Li and T.L. Huang

− 102 −

cell, the handoff procedure will have finished.
An MH can disconnect itself from the network by

sending a disconnect message to its current MSS and
can reconnect at a later time by sending a connect
message. If an MSS receives a message for any of the
disconnected local MHs, the message can be stored and
delivered to the MH after reconnection.

2. Physical Constraints and the Requirements

Mobile hosts have significantly less computing
power compared to fixed hosts. In addition, an
MH requires a stand-alone power resource (Badrinath
et al., 1993; Forman and Zahorjan, 1994). The
fact that CPU operations, memory accesses, data
transmission and reception all consume power leads us
to believe that the number of operations executed by
an MH should be minimal to reduce power consump-
tion.

Additionally, wireless channels have significantly
lower bandwidth than to those within fixed networks.
Thus, the number of wireless messages should be kept
to a minimum. All these considerations suggest that
the relevant state information and data structure re-
quired for a protocol execution should be stored in
MSSs.

To reduce power consumption further, MHs
often operate in a doze mode: the host shuts down
most of its functions and only listens for incoming
messages (Badrinath et al., 1993). On receiving a
message, the MH resumes its normal mode of opera-
tion. The effectiveness of the doze mode will be
mitigated if a significant portion of the protocol’s state
is maintained at an MH since control messages for
updating the protocol’s state will cause the MH to
resume its normal mode. This suggests that protocols
for MHs should be structured so that the communica-
tion and computation load of a protocol execution is
placed on the static network as far as possible. Another
operation mode to be taken into account is the discon-
nection mode. An MH may connect or disconnect
itself frequently. Thus, we require that the protocols
handle connections/disconnections effectively and
gracefully.

3. Definition

An event in a mobile computing environment can
be the sending of a message, the receiving of a message
or an internal action. Since there is no perfectly
synchronized clock, events in such an environment are
ordered based on Lamport’s happen before relation,
→, defined as follows (Lamport, 1978).

For any two events a and b, a→b is true if and

only if
(1)a and b occur at the same host, and a occurs

before b,
(2)a is a sending of a message, and b is the receipt

of that message, or
(3) there exists an event c such that a→c and c→b.

If a →/ b and b →/ a, then a and b are said to be
concurrent, denoted as a||b.

Let sent(m) be the event that corresponds to the
sending of message m and recv(m) be the event that
corresponds to the receipt of message m. Causal or-
dering of message delivery (COMD) is obeyed if, for
any two messages m1 and m2 that have the same des-
tination, sent(m1)→sent(m2) then recv(m1)→recv(m2).
Similarly, causal multicast (CM) is a multicast that
obeys causal ordering of message delivery. When
messages are sent using traditional transport protocols,
COMD or CM might be violated due to the delay of
the communication channel. Implementing COMD or
CM means adding a protocol to the original system such
that, as far as application is concerned, causal ordering
is never violated. To avoid confusion, we will hereafter
consistently use the term “receive” to denote a message
received by the original system and “deliver” to denote
a message delivered to the application level. That is,
let deliv(m) denote the event in which message m is
delivered; a COMD or CM algorithm can ensure that
sent(m1)→sent(m2) always implies that deliv(m1)
→deliv(m2).

III. Our Algorithm

This section will present the algorithm for causal
multicasting of messages to MHs. An execution of the
protocol may be requested either by an MH or a fixed
host. When it is requested by an MH, the local MSS
is responsible for executing the protocol on behalf of
the MH. However, a non-MSS fixed host can also make
such a request. We assume that the request is forwarded
to an MSS which then executes the protocol. In the
sequel, the term initiator denotes the MSS executing
the protocol on behalf of an MH or another fixed host.
For simplicity, we only consider multicast messages
that are addressed to MHs, excluding those that are
addressed to fixed hosts.

Our algorithm consists of three modules: the
WIRED module, HANDOFF module and WIRELESS
module. The three modules communicate with each
other. The WIRED module, executed in a fixed net-
work, is the main module for controlling causal multicast
delivery. The HANDOFF module is executed when an
MH moves from one cell to another, and is responsible
for transferring relevant information to the new cell.
The WIRELESS module is responsible for delivering

A CM Algorithm in Mobile System

− 103 −

a message from/to MHs.

1. WIRED Module

The WIRED module is the main part of our al-
gorithm for controlling causal multicast. We will
describe the multicast assumption, the MSS-based causal
multicast scheme, the data structure and the algorithm
of the module in the following.

A. Multicast Assumption

Multicasting a message in a mobile environment
can be achieved by means of multiple unicasts using
point-to-point mobile internetworking schemes, such
as those presented by Bhagwat and Perkins (1993) and
Ioannidis et al. (1991). However, this results in an
increase of the power consumption at the sender MH
and poor utilization of both wired and wireless links
(Acharya and Badrinath, 1993). Moreover, routing
protocols in a network with MHs incurs either a search
cost (Ioannidis et al., 1991) or an inform cost (Bhagwat
and Perkins, 1993) in tracking the location of indi-
vidual MHs.

The multicast part of our algorithm adopts the
basic idea of the multicast protocol presented by Acharya
and Badrinath (1993): when a multicast message is sent
by MHk, it is first sent to the local MSS of MHk, and
then the MSS sends the message to all MSSs. After
receiving the message, the MSS forwards this message
to its local MHs which are the destinations of the
message and buffers it. When an MH moves to the
cell, the MSS will check the buffer and forward the
message in it to the MH if the message has not been
delivered to the MH. Moreover, the MSS can delete
the buffered message only after the message is deliv-
ered to all the destinations to guarantee at-least-once
delivery.

B. The MSS-based Causal Ordering Scheme

We assume that the wireless channel between an
MSS and an MH in its cell is FIFO. If the MHs never
move, maintaining the causal multicast in the MSS
level can also ensure causal multicast in the MH level
(Alagar and Venkatesan, 1994). To ensure causal
ordering among MHs, a message m only needs to carry
information to enforce causal ordering of message
delivery among MSSs. Hence, the message space
overhead is greatly reduced. However, the mobility
of the MHs may cause the CM to be violated (Alagar
and Venkatesan, 1994). In addition, it may also cause
the MHs to deliver a message more than once or fail
to deliver a message (Acharya and Badrinath, 1993).
The module is a two-level delivery protocol: before a
message is delivered to an MH, the message has to be

first delivered to the MSS to which the MH is local.
The MSS, after being delivered, then forwards the
message to the MH.

C. Data Structure

Each MSSi, as a proxy, maintains an integer,
seq_noi, to count the number of messages it has ini-
tiated so far. The counter is set to zero at the beginning.
Each time an MSSi receives a multicast request, seq_noi
is incremented by one. For example, if seq_noi equals
x, this implies that MSSi has initiated x multicast
messages for MHs. MSSi also maintains a vector of
length nMSS, called DELIVi, to track the delivery infor-
mation for MSSi. Each entry of DELIVi is set to zero,
i.e., (0, 0, ..., 0), initially. The vector records the
number of messages initiated from other MSSs which
have been delivered to MSSi. For example, if DELIVi[j]
equals x, where i≠j , this denotes that all the messages
sent by MSSj with seq_noj less than or equal to x have
been delivered to MSSi.

An MSS acts as a proxy for the MHs which are
local to it and also maintains two vectors, DELIV_MHk

and SENT_MHk, of length nMSS for each of its local
MHk. DELIV_MHk denotes the greatest sequence num-
ber, on per-MSS basis, that has been delivered to MHk.
For example, if DELIV_MHk[j] equals x, this implies
that the greatest sequence number of all the messages
initiated by MSSj that have been delivered to MHk is
x. SENT_MHk denotes the knowledge of MHk about
the number of messages that have been initiated from
each MSS. For example, if SENT_MHk[j] equals x, this
means that x messages have been initiated from MSSj

by the knowledge of MHk. The two vectors will be
transferred to the new cell if the MH moves to a new
cell.

When an MSS initiates a multicast, it sends the
message with the control information appended to
all MSSs. The control information consists of the
initiator id, destination ids and timestamp of the
message. Each MSS uses the control information
received with the message to determine if the message
can be delivered to the MSS or if it should be buffered
until its causal predecessors meant for the MSS are
delivered. If the message is delivered, it will be put
in MSS_BUFERi to terminate the first level (MSS level)
delivery of the protocol. The second level (MH level)
delivery of the protocol compares DELIV_MHk with the
timestamp of the message for each local destination
MHk to determine if the message has been delivered
to the destination MH at other MSSs or not. If not,
the message wi l l be put in a del iver queue,
DELIV_Q_MHk, for MHk. The WIRELESS module
then forwards the messages in DELIV_Q_MHk one by
one to MHk.

C.P. Li and T.L. Huang

− 104 −

D. The Algorithm

(1) On receiving a causal multicast (CMcast)
request from an MHk, the local MSSi initiates
the protocol as follows.
(i)Before sending m, MSSi executes the follow-

ing steps.
/* It increments seq_noi and timestamps m.

*/
(a) seq_noi:=seq_noi+1;
(b) SENT_MHk[i]:=seq_noi;
(c) timestamp(m):=SENT_MHk;

(ii) MSSi sends CMcast(i,m,timestamp(m),dests
(m)) to all MSSs.

(2) On receiving a CMcast() from MSSj, MSSi ex-
ecutes the steps below.
(i) Wait until : /* Beginning of the MSS level

delivery */
(a) timestamp(m)[j]=DELIVi[j]+1 and,
(b) timestamp(m)[l] ≤DELIVi [l] ∀ l∈{1 ...

nMSS} −{ j}.
/* It’s key to MSS level delivery. Step i(a)

ensures that MSSi has delivered all the
messages initiated by MSSj that precede
m. Step i(b) ensures that MSSi has deliv-
ered all those messages received by MHk

before MHk makes the request. */
(ii) DELIVi is updated in the following manner.

(a)DELIVi[j]:=timestamp(m)[j].
(iii) m is appended to DELIV_BUFi along with

dests(m).
/* m can be deleted from the buffer only if

MSSi have received the Delete(m) mes-
sage from the initiator. MSS level delivery
is finished. */

(iv) ∀MHk such that (MHk∈M_Locali) and
(MHk∈dests(m))
/* Beginning of MH level deliver */
if (timestamp(m)≤DELIV_MHk)

1

then
delete k from dests(m);

/* The message has been delivered to MHk

at other MSSs. */
else

insert message m into DELIV_Q_MHk;
(3) The WIRELESS module of MSSi sends the mes-

sages in DELIV_Q_MHk one by one via wireless
media. When MHk acknowledges the receipt of
m, the WIRED module at MSSi will be notified
and will execute as follows:

1 The relations between two vectors, a and b, are defined as follows:
a≤b⇔∀i , a[i]≤b[i],
a<b⇔a≤b and a≠b.

(i) delete m from DELIV_Q_MHk;
(ii) ∀x∈1...nMSS

 DELIV_MHk[x] = max (DELIV_MHk[x] ,
timestamp(m)[x])

SEND_MHk[x] = max (SEND_MHk[x] ,
timestamp(m)[x])

(iii) send Ack(m, k) to the initiator of message m.
(4) On receiving Ack(m, k) from an MSS, the ini-

tiator executes as follows:
(i) delete k from dests(m);
(ii) if dests(m)=∅ then

send Delete(m) to all MSSs;
(5) On receiving a Delete(m) message from the

initiator of m, MSSi executes as follows:
(i) delete m and its related information in the

DELIV_BUFi.
/* Message m has been delivered to all des-

tination MHs, so that MSSs no longer
need to maintain it. */

2. HANDOFF Module

The protocol relies on this module to transfer an
MH’s state to its current cell when the MH moves to
a new cell. In our model, we assume that each MSS
periodically broadcasts a beacon so that an MH can
discover its transfer to a new cell. The module is
activated when an MH discovers that it has moved to
a new cell. The module uses the handoff procedure
presented by Acharya and Badrinath (1993) and de-
scribed in the following. Consider MHk that moves
from the cell under MSSM to MSSN. On discovering
that i t has moved to a new cell , MHk sends a
greeting(k,M) message with its own identity k and the
id of its previous MSS as the parameters to MSSN. On
receiving greeting(k,M), MSSN sends deregister(k) to
MSSM. MSSM deletes MHk from MSS_localM after
receiving the deregister message from MSSN and then
transfers the relevant information about MHk to MSSN

via a register(k,data) message. In response, MSSN adds
k to the list MSS_localN and stores the data about MHk

at MSSN. The lists, MSS_localN and MSS_localM, con-
tain ids of the MHs local to the cells of MSSN and MSSM,
respectively.

The handoff procedure is completed when MSSN

has received the register message from MSSM. From

A CM Algorithm in Mobile System

− 105 −

then on, MSSN takes over the jobs of previous MSS for
MHk. If MHk migrates to another MSS, MSSN′, before
the current handoff procedure is completed, the
new migration message issued by MSSN′ will not be
handled until the current handoff procedure is com-
pleted.

In addition to transferring the algorithm related
data structure to the new cell, the HANDOFF module
also needs to ensure that the FIFO channel between
the MH and its previous MSS is flushed properly
(Acharya and Badrinath, 1993). To flush the channel
properly, an MHk maintains an integer number,
seqM_to_k, to record the sequence number of the last
message received on the FIFO channel from its local
MSS to the MH. Similarly, an MSS maintains an
integer variable, seqk_to_M, for each local wireless
channel to record the sequence number of the last
message received in sequence from each local MHk to
the MSS.

Let an MHk move from the cell of MSSi to that
of MSSj. The module is executed as follows.

(1) On receiving a deregister(k, seqM_to_k) message
from MSSj, MSSi begins execution as follows:

(i) MHk is deleted from MSS_Locali;
(ii) use seqM_to_k as an implicit acknowledg-

ment;
(iii) noti fy the WIRED module to update

DELIV_MHk and SENT_MHk;
(iv) wait for DELIV_MHk and SENT_MHk from

WIRED module;
(v) Send Register(k, DELIV_MHk, SENT_MHk,

seqk_to_M) to the HANDOFF module at MSSj;
(vi) Delete the information relevant to MHk.

(2)MSSj, on receiving a register() message, begins
to execute the HANDOFF module as follows:

(i) Store DELIV_MHk and SENT_MHk at MSSj;
(ii) Create DELIV_Q_MHk for MHk:

Add k to MSS_Localj;
∀ m ∈ D E L I V _ B U Fj s u c h t h a t
(MHk∈dests(m))
if (timestamp(m)≤DELIV_MHk) then

delete k from dests(m);
else

put m in DELIV_Q_MHk;
(iii) Send Arrival(k, seqk_to_M) to the WIRELESS

module at MSSj;
/* The WIRELESS module can use seqk_to_M

to find out if the causal multicast request
has been received by the previous MSS.
*/

3. WIRELESS Module

The WIRELESS module is the only module at an

MSSi that can communicate with its local MHs via
wireless media. The interaction between the WIRE-
LESS module of an MSSi and a local MHk is described
below:

(1)MHk, upon discovering that it has entered a new
cell, executes as follows:
(i) Send greeting(k, seqM_to_k) message to the

WIRELESS module of the new cell.
(2)MSSi, on receiving an arrival(k, seqk_to_M), ex-

ecutes as follows:
(i)Send init(seqk_to_M) to MHk;
(ii)Set seqk_to_M to zero;

(iii)it then continues to execute the following
loop.

While (h∈MSS_Locali) do {
if ¬(DELIV_Q_MHk=∅) then

Deliver message m at the top of the queue;
if an Ack is received from MHk then

Notify the WIRED module to update
DELIV_MHk and SENT_MHk;

if a causal multicast request is received from
MHk then {
increment seqk_to_M by one;
notify the WIRED module;
}

}
(3) On receiving an init (seqk_to_M), MHk executes as

follows:
(i)use seqk_to_M as an implicit acknowledgment;
(ii)initialize seqM_to_h to zero;

(iii)retransmit the lost causal multicast request.

IV. Correctness Proof

We will prove the correctness of the protocol in
three stages. First, we will show that causality is
never violated (safety property), and we will then
demonstrate that it never delays a message inde-
finitely (liveness property). Last, we show the exactly
once delivery property. However, before developing
these proofs, we need some preliminary results that
are given in Subsection 1. Then, in Subsection 2,
we will prove the safety property of our algorithm. In
Subsection 3, we will prove the liveness property
of our algorithm. Finally, in Subsection 4, we will
prove the exactly once delivery property of our algo-
rithm.

1. Preliminary Results

To prove the correctness of our protocol, we need
some preliminary results.

Observation 1. Consider a multicast message m ini-

C.P. Li and T.L. Huang

− 106 −

tiated by MSSi such that timestamp(m)[j]>0, where j≠i,
and let timestamp(m)[j]=x. Then, mx, the xth message
initiated from MSSj, should have been sent.

Observation 2. Let m be the xth message sent by MSSi.
Then, timestamp(m)[i]=x.

Observation 3. Consider two messages m1 and m2

such that sent(m1)→sent(m2) then timestamp(m1)<
timestamp(m2).

Observation 4. For two messages m1 and m2, let
sent(m1)→sent(m2), and let both of them be initiated
by the same MSS, say MSSi. Then, timestamp(m1)[i]<
timestamp(m2)[i].

Lemma 1. Consider a message m initiated by MSSi.
If message m has not been delivered to MSSj, then
DELIVj[i]<timestamp(m)[i].

Proof. Let m be the xth message from MSSi, where
timestamp(m)[i]=x, DELIVj[i]<x, and assume that m
has not been delivered to MSSj. In the following, we
will prove it by contradition. Suppose that there exists
a message m′ (m≠m′) with timestamp(m′)[i]≥x that can
be delivered to MSSj before message m so that it can
make DELIVj[i]≥x without delivering message m. There
are two possible conditions:

Case 1. m′ is sent from MSSi; then, timestamp(m′)[i]
>x (because m≠m′). timestamp(m′)[i]≠DELIVj[i]+1.
It does not satisfy the first condition of Step(2) of
the WIRED module and, thus, is delayed.

Case 2. m′ is sent from MSSl, where l≠i . We have
timestamp(m′)[i]>DELIVj[i]; similarly, it does not
satisfy the second condition of Step(2) of WIRED
module and, thus, is also delayed.

Thus, this assumption leads to a contradiction.■

Corollary 1. If a message m is initiated from MSSi,
the message m′ with timestamp(m′)[i]≥timestamp(m)[i]
will be delivered after m is delivered.

Lemma 2. Consider a message m initiated from MSSi,
where MHk is one of its destinations. If message m
has not been delivered to MHk (MH level deliver), then
DELIV_MHk[i]<timestamp(m)[i].

Proof. In the following, we will prove it by contradic-
tion. Let m be the xth message from MSSi, where
timestamp(m)[i]=x and DELIV_MHk[i]<x. Suppose that
there exists a message m′ (m′≠m) with timestamp(m′)[i]

≥x, and assume that the message is delivered to MHk

before message m.
By Corollary 1, message m will be delivered before

m′ in the MSS level. Since the wireless channels are
FIFO, MHk delivers m before m′, thus leading to a
contradiction. ■

2. Safety Property Proof

Suppose two messages m1 and m2, such that
SEND(m1)→SEND(m2), are both destined for MHk. As
far as MHk is concerned, we will prove that m2 can not
be delivered to MHk if m1 has not been delivered.
Consider the actions of MSSi, which receives the two
messages.

Case 1. m1 and m2 are both initiated by the same
MSS, say MSSj. By Observation 4, we have

timestamp(m1)[j]<timestamp(m2)[j]. (1)

Furthermore, by Lemma 1, if m1 has not been
delivered to MSSi, we have

DELIVi[j]<timestamp(m1)[j]. (2)

From (1) and (2), DELIVi[j]≠timestamp(m2), and
m2 is, thus, delayed by Step(2) of the WIRED
module.

Case 2. m1 and m2 are initiated by two different
MSSs, say MSSj and MSSj ′, separately. We will
show that m2 can not be delivered before m1 by
induction on the number of messages delivered to
MSSi.

Observe first that send(m1)→send(m2) by Obser-
vation 3; thus, we have

timestamp(m1)<timestamp(m2).

In particular, consider the field corresponding to MSSj,
the initiator of m; we have

timestamp(m1)[j]≤timestamp(m2)[j]. (3)

Base step. The first message delivered to MSSi can not
be m2.

Recall that if no message has been delivered to
MSSi, then DELIVi[j]=0. However, timestamp(m1)[j]>0
(because m1 is sent by MSSj); hence, timestamp(m2)[j]>0
and m2 can not be the first message delivered to
MSSi.

A CM Algorithm in Mobile System

− 107 −

Induction steps. Suppose that MSSi has delivered k
messages, none of which is a message m such that
SEND(m1)→ SEND(m). If m1 has not been delivered,
then by Lemma 1 we have

DELIVi[j]<timestamp(m1)[j]. (4)

From (3) and (4), it follows that

DELIVi[j]<timestamp(m2)[j].

Again, by Step(2) of the WIRED module, m2 can
not be the k+1st message delivered to MSSi.

3. Liveness Property Proof

In the following, we will prove that our protocol
never violates the liveness property; i.e., our protocol
will not delay a message indefinitely.

Suppose that there exists a multicast message m
initiated by MSSj that cannot be delivered to MSSi

indefinitely. Step(2) of the WIRED module implies
that either

timestamp(m)[j]≠DELIVi[j]+1 or

∃lEtimestamp(m)[l]>DELIVi[l], where l≠j .

We will consider two cases in turn.

Case 1. timestamp(m)[j]≠DELIVi[j]+1. This means
that m is not the next message to be delivered to
MSSi from MSSj. There are only a finite number
of messages from MSSj that can precede m. Since
messages are sent to all MSSs and the channels
between MSSs are FIFO, it follows that there must
be some message m′ sent by MSSj that MSSi has
received but not delivered, and that it is the next
message from MSSj to be delivered, i.e., time-
stamp(m)[j]=DELIVi[j]+1. If m′ is also delayed, this
delay must be caused by case 2.

Case 2. ∃lEtimestamp(m)[l]>DELIVi[l], where l≠j.
Let timestamp(m)[l]=x. By Observation 1, the xth
message m′ sent from MSSl should has been sent
before m was sent. Message mx either has not yet
been received or has been received but is delayed
by MSSi. However, since messages are broadcast
in the MSS level, m′ is received eventually by MSSi.
The same reasoning applied to m can also be applied
to m′.

The number of messages that must be delivered
before m is finite, thus leading to a contradiction. This

Table 1. Comparison between Related Works

Algorithms Message Memory
Space Overhead

Overhead

Our algorithm O(nMSS) O(nMSS)
AV-94-1 O(nMH

2) O(nMH
2)

AV-94-2 O(nMSS
2) O(1)

AV-94-3 O(nMSS
2 ×k2) O(nMSS

2 ×k2)
YHH-96 O(nMSS×nMH) O(nMSS×nMH)
PRS-95 O(nMH

2) O(nMH
2)

Notes: nMSS: number of MSSs.
nMH: number of MHs.
ndst: number of destination MHs for a certain multicast message.
k: number of logical MSS for a physical MSS.

Table 2. Comparison between Related Works (Cont.)

Algorithms Handoff Complexity Possibility of
number of message Inhibition
messages size

Our algorithm O(1) O(nMSS) Yes
AV-94-1 O(1) O(nMH

2) No
AV-94-2 O(nMSS) O(1) Yes
AV-94-3 O(nMSS×k) O(1) Yes
YHH-96 O(1) O(nMSS×nMH) Yes
PRS-95 O(1) O(nMSS

2) No

means that our protocol never delays a message indefi-
nitely. ■

4. Exactly Once Property Proof

In this section, we will prove that the destination
of a message receives exactly one copy of the message.
Consider a message m, and assume that MHk is one of
the destinations of the message. There are two possible
situations for MHk to deliver the message.

Case 1. MHk has received one copy of the message.
By Step(3) of the WIRED module, DELIV_MHk

should have been updated to greater than time-
stamp(m). Step(2) of the WIRED module makes it
impossible to deliver another copy of the message.

Case 2. MHk has not received the message at all.
By Lemma 2, DELIV_MHk[i]<timestamp(m)[i] and,
thus, DELIV_MHk>| timestamp(m). Without loss of
generality, we consider that MHk moves to a new
cell, MSSi. There are also two possible situations:

Subcase 1. MSSi has delivered message m. Since
m has not been delivered to all of its destinations,

C.P. Li and T.L. Huang

− 108 −

basic requirements described in Section II.2, an MSS
acts as a proxy and maintains the algorithm related data
structure for its local MHs. We require that the amount
of data be as small as possible. Recall that, as noted
in Section III.l.C, an MSS maintains two vectors,
SENT_MH and DELIV_MH, for each local MH. The
memory overhead for each MH is O(nMSS).

Consider the related works. The overhead is
O(nMH

2) in PRS-95, O(nMH
2) in AV-94-1, O(1) in AV-

94-2, O(k2× nMSS
2) in AV-94-3 and O(nMH×nMSS) in YHH-

96. It is worth noting that in AV-94-2, instead of
storing the message for each MH, the MSS maintains
the information for each logical MSS.

The memory overhead of our algorithm is less
than that of any of the algorithms except AV-94-2.
However, the handoff procedure of the algorithm in
AV-94-2 requires O(nMSS) message exchanges. An-
other important feature of our algorithm is that, unlike
algorithm PRS-95, AV-94-1 and YHH-96, the data
structure maintained by an MSS for its local MHs in
our algorithm is independent of the number of MHs.
Thus, MHs connections/disconnections do not affect
the structure of the algorithm. Our algorithm, thus, can
handle the two operations easily and is suitable for a
mobile computing environment.

3. Handoff Complexity

When a MH moves from one cell to another, the
handoff procedure is incurred to transfer the algorithm
related data structure to its new cell. Recall that as
explained in Section III.2, the HANDOFF module of
our algorithm requires transferring of two vectors,
SENT_MH and DELIV_MH, and uses O(1) messages.
Thus, our algorithm requires O(1) messages of size
O(nMSS) when an MH moves to its new cell.

Consider the related works. Algorithm PRS-95
uses O(1) messages of size O(nMH

2). The three algo-
rithms in AV-94 use O(1) messages of size O(nMH

2),
O(nMSS) messages of size O(1) and O(k×nMSS) messages
of size O(1), respectively. YHH-96 requires O(1)
messages of size O(nMSS×nMH). It is worth noting that
the number of messages dominates the handoff com-
plexity (Lazowska et al., 1986). Thus, the performance
of O(1) messages of size O(nMSS) is better than that of
O(nMSS) messages of size O(1).

From the comparison discussed above, our algo-
rithm has better performance than the related works in
terms of handoff complexity.

4. Possibility of Unnecessary Inhibition

The drawback of our algorithm is the possibility
of a message being inhibited from being delivered to

message m will still be buffered in DELIV_BUFi.
Message m will be forwarded to DELIV_Q_MHk

by Step(2) of the HANDOFF module.

Subcase 2. MSSi has not delivered message m.
Since our algorithm satisfies the liveness prop-
erty, MSSi will eventually deliver message m. By
Step(2) of the WIRED module, message m will
be forwarded to DELIV_Q_MHk.

V. Analysis and Comparison

In this section, we will analyze our algorithm and
compare it with related works. The comparison results
are shown in Tables 1 and 2, and more detailed dis-
cussion will be given in the following sections. Section
V.l describes the message space overhead. Section V.2
contains a description about the memory overhead.
Handoff complexity analysis is presented in Section
V.3. Finally, we will discuss the possibility of inhi-
bition in Section V.4.

In the following, we will denote the Prakash-
Raynal-Sinhal Algorithm (Prakash et al., 1997), Alagar-
Venkatesan Algorithm (Alagar and Venkatesan, 1994)
and Yen-Huang-Hwang Algorithm (Yen et al., 1996)
as PRS-95, AV-94 and YHH-96, respectively, for
abbreviation. Further, we will use AV-94-1, AV-94-
2 and AV-94-3 to denote the first, second and the third
algorithm of AV-94, respectively.

1. The Message Space Overhead

To maintain causal multicast, we need to append
extra information to each message. The information
is essentially overhead that increases the transmission
delay when it is passed over the network. The larger
the size of the information, the longer the delay of the
transmission. In our algorithm, we append only a nMSS-
integer vector to each message to maintain causal
multicast. Thus, the message space overhead of our
algorithm is O(nMSS). Typically, the MSSs constitute
a small subset of all the nodes in a mobile computing
system.

Consider the related works. The message space
overhead is O(nMH

2) in PRS-95, O(nMH
2) in AV-94-1,

O(nMSS2
2) in AV-94-2, O(k2× nMSS

2) in AV-94-3 and
O(nMSS×nMH) in YHH-96. From the discussion above,
it can be observed that our algorithm outperforms the
related works with respect to the message space over-
head.

2. Memory Overhead

In a mobile computing environment, to satisfy the

A CM Algorithm in Mobile System

− 109 −

an MH; i.e., it is possible that delivery of a message
may be delayed even though delivery of the message
does not violate causal ordering. This is because in
our algorithm, causal ordering is maintained among
MSSs. Delivery of a message may violate causal
ordering from an MSS’s point of view whereas its
delivery to an MH may not violate causal ordering from
the MH’s point of view. Algorithms AV-94-2, AV-
94-3 and YHH-96 also face this problem. However,
all of the algorithms benefit from reduction in message
space overhead.

In contrast, algorithm PRS-95 and AV-94-1
maintain causal ordering explicitly among MHs. Hence,
inhibition never occurs. Both algorithms require
O(nMH

2) message overhead, which can also cause trans-
mission delay. A related simulation described by Alagar
and Venkatesan (1994) shows that such inhibition is
not serious: when nMH is large enough, say 30, the
disadvantage of inhibition will be cancelled out by the
benefit gained from the reduction in message overhead
since in such a situation, the message space overhead
will dominate the delay in the system.

VI. Conclusions

In this paper, we have presented a causal multicast
algorithm for a mobile computing environment. In
such an environment, many physical constraints which
do not exist in traditional distributed systems should
be taken into consideration: low bandwidth of the
wireless links, tight constraints on power consumption
and significantly lower computing power. In the design
of an algorithm which will satisfy these constraints,
each MSS in the system acts as a proxy and maintains
the algorithm related data structure for its local MHs
in order to execute the protocol. Instead of maintaining
causality explicitly among MHs, our algorithm en-
forces causal ordering only among MSSs. Thus, the
message space overhead required to maintain causal
ordering is proportional to the number of MSSs. Since
the number of MSSs is much smaller than that of MHs,
the overhead is reduced greatly. The MSS-based al-
gorithm has been proved to satisfy the safety, liveness
and exactly once delivery properties. It can also handle
dynamically changing multicast communication groups.

The low memory and communication overhead
satisfy the low energy consumption and low available
bandwidth constraints of a mobile computing environ-
ment. The algorithm is, thus, easily scalable. In
addition, the data structure maintained for each MH in
order to enforce multicast is independent of the number
of MHs. Connections/disconnection, thus, can be
handled gracefully without modifying the data struc-

ture for each MH. Hence, the MSS-based algorithm
is suitable for a mobile computing environment.

Acknowledgment

This research was supported by the National Science Council,
R.O.C., under grant NSC 85-2213-E009-061.

References

Acharya, A. and B. R. Badrinath (1993) Delivering multicast mes-
sages in networks with mobile hosts. Proceedings of the 13th
International Conference on Distributed Computing Systems, pp.
292-299. Pittsburgh, PA, U.S.A.

Alagar, S. and S. Venkatesan (1994) Causally ordered message
delivery in mobile system. Proceedings of Workshop on Mobile
Computing Systems and Applications, pp. 169-174. Santa Cruz,
CA, U.S.A.

Badrinath, B. R., A. Acharya, and T. Imielinski (1993) Impact of
mobility on distributed computations. Operating Systems Re-
view, 27(2), 15-20.

Badrinath, B. R., A. Acharya, and T. Imielinski (1994) Structuring
distributed algorithms for mobile hosts. Proceedings of the 14th
International Conference on Distributed Computing Systems, pp.
21-28. Pozman, Poland.

Bhagwat, P. and C. E. Perkins (1993) A mobile networking system
based on internet protocol(ip). USENIX Symposium on Mobile
and Location-Independent Computing. Cambridge, MA, U.S.A.

Birman, K. and T. Joseph (1987) Reliable communication in the
presence of failures. ACM Transactions on Computer Systems,
5(1), 47-76.

Birman, K., A. Schiper, and P. Stephenson (1991) Lightweight
causal and atomic group multicast. ACM Transactions on Com-
puter Systems, 9(3), 272-314.

Forman, G. H. and J. Zahorjan (1994) The challenges of mobile
computing. IEEE Computers, 27(4), 38-47.

Ioannidis, J., D. Duchamp, and G. Q. Maruire, Jr. (1991) Ip-based
protocols for mobile internetworking. Proceedings of ACM
SIGCOMM Symposium on Communication Architecture and Pro-
tocols, pp. 235-245. Zurich, Switzerland.

Jalote, P. (1994) Fault Tolerance in Distributed Systems, Chap. 4,
pp. 141-183. Prentice-Hall, Englewood Cliffs, New Jersey, U.S.A.

Lamport, L. (1978) Time, clocks, and the ordering of events in a
distributed system. Communications of the ACM, 21(7), 538-
565.

Lazowska, E. D., J. Zahorjan, D. R. Cheriton, and W. Zwaenepoel
(1986) File access performance of diskless workstation. ACM
Transactions on Computer Systems, 4(3), 238-268.

Prakash, R., M. Raynal, and M. Singhal (1997) An adaptive causal
ordering algorithm suited to mobile computing environments.
Journal of Parallel and Distributed Computing, 41, 190-204.

Raynal, M., A. Schiper, and S. Toueg (1991) The causal ordering
abstraction and a simple way to implement it. Information
Processing Letters, 39, 343-350.

Schiper, A., J. Eggli, and A. Sandoz (1989) A new algorithm to
implement causal ordering. Proceedings of the 3rd International
Workshop on Distributed Algorithms. Nice, France.

Yen, L. H., T. L. Huang, and S. Y. Hwang (1996) A protocol for
causally ordered message delivery in mobile computing systems.
Proceedings of the Second International Mobile Computing
Conference, pp. 35-41. Hsinchu, Taiwan, R.O.C.

C.P. Li and T.L. Huang

− 110 −

