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ABSTRACT

A graphic-theoretic search-based algorithm is proposed to find the optimal binary morphological
erosion filter. According to the Matheron representation, the binary morphological erosion filter is defined
as the union of multiple erosions. Traditionally, finding the optimal solution involves a long search and
is a time consuming procedure because we have to compute the MSE values over all possible structuring
element combinations and make comparisons among them. The search for the optimal solution is reduced
to the problem of obtaining a path with the minimal cost from the root node to the optimal node on an
error code graph (ECG). In this paper, two graphical searching techniques, the greedy and constraint
satisfaction algorithms, are applied to avoid searching an extremely large search space. Experimental
results are illustrated to show the feasibility and efficiency of our proposed method.

Key Words: morphological erosion filter, error code graph, mean-square error, greedy searching, con-

straint satisfaction searching

I. Introduction

Optimal mean-square morphological filters, both
binary and gray scale, have been characterized by
Dougherty (1992) and Dougherty et al. (1991) in terms
of the Matheron representation. In the binary morpho-
logical erosion case, Dougherty (1992) applied erosion
as an estimator to find the optimal filter automatically
by minimizing the mean-square error (MSE). Loce and
Dougherty (1992a) also proposed the erosion operation
as the estimation rule to minimize the mean-absolute
error (MAE). Both of these estimation rules have the
same effects on binary images. However, the estima-
tion process, even in the binary case, is extremely time
consuming because finding the optimal mean-square or
mean-absolute morphological filter requires searching
a large number of structuring element combinations.
As mentioned by Dougherty (1992), the computation
time grows rapidly with the size of the observation
window, and it is almost impossible to design a filter
without using a high-performance computer.

*To whom all correspondence should be addressed.

Various approaches to decreasing the searching
time in the optimal binary morphological erosion filter
have been proposed. An approach to increasing the
computational efficiency was given by Loce and
Dougherty (1991, 1992b) which involves constraining
the class of filters from which the optimal morphologi-
cal filter is to be chosen. The constraint techniques
involve limiting the structuring element’s size and shape,
the number of structuring elements forming the filter,
and the search of the structuring element from some
previously chosen library. In considering these per-
spectives, Dougherty’s proposed approach only pro-
vides a sub-optimal filter. Dougherty, Mathew and
Swarnaker (Dougherty et al., 1991; Mathew et al.,
1993; Dougherty and Loce, 1993) developed an algo-
rithmic approach to performing the search of optimal
filters. They derived the optimal morphological filter
from the conditional expectation, from which the
switching methodology offers quite good computational
efficiency for certain types of noise conditions.

A graphic search-based method was proposed by
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Han and Fan (1994) to decrease the searching time for
the optimal solution. They designed the error code
graph (ECGQG) to find the optimal morphological erosion
filter by making use of the greedy and branch and
bound (B&B) techniques. The problem of finding the
optimal solution is reduced to the problem of searching
for a shortest path in the ECG. Since ECG satisfies
some greedy properties, only a few nodes need to be
traversed and examined in the graph. Furthermore,
three heuristic methods have also been proposed to
mitigate the worst case of the B&B method.! Though
the obtained solution via the three heuristic methods
can not guarantee that a global optimal filter will be
found, the obtained local optimal filter is a global
optimal filter in many image cases.

In this paper, the graphic search-based algorithm
proposed by Han and Fan (1994) is further improved
by utilizing the greedy and comnstraint satisfaction
searching algorithms. In the artificial intelligence (A.1.)
field (Rich, 1983), many problems are considered as
problems of constraint satisfaction in which the goal
is to find some problem states that satisfy a given set
of constraints. Three inference rules are designed to
choose the correct candidate vector for the undecidable
case of the greedy property. The vector satisfying the
inference rules is chosen as an element of the optimal
pathin the ECG. We also guarantee that the found filter
is a global optimal solution. Furthermore, there are
at most 2"-1 nodes to be traversed in the ECG.

The rest of this paper is organized as follows.
Section II gives a brief discussion of the fundamental
propositions of the morphological filter via minimiza-
tion of the mean-square error. The error code graph
and its greedy properties are also recalled in this section.
The improvement of the searching algorithm is de-
scribed in Section III. In this section, three inference
rules are developed which guarantee that the solution
we find is actually an optimal solution. Section IV
gives some experimental results to show the efficiency
of our proposed algorithm. Moreover, the time com-
plexity and memory space requirement of the proposed
method are analyzed in Section IV. Finally, conclu-
sions are given in Section V.

Il. Background

In this section, the problem of the optimal binary
morphological erosion filter is firstly presented, and
then the searching process for the optimal solution
carried out by comparing all the MSE values of possible
basis element combinations is described. To improve

the performance of the searching process, a graphic
search-based method via the greedy and B&B tech-
niques proposed by Han and Fan (1994) is briefly
described in subsections I1.2 and II.3.

1. Problem Statements

Dougherty {1992) designed an optimal binary
morphological erosion filter in order to obtain the best
outcome of erosion operation. He used the erosion
operation as an estimator to design the optimal filter
which minimizes the mean square error on binary
images. According to the Matheron representation, the
estimator for a general filter is defined as the union
of multiple erosions. In Dougherty (1992) and Loce
and Dougherty (1992a), the general filter containing
M structuring elements is expressed as follows:

(%)= (30 AD)
= ot {min {12l /1= 13}, &Y

where X=(x[1], x[2], ..., x[N]) is an N-tuple binary
vector in the universal set U that is generated from N
random variables X[1], X[2], ..., X[N]. The collection
{A@) Y={ali,j]: i=1...M, j=1...N} is called the basis for
¥, denoted as Bas(W), which satisfies the morphologi-
cal basis criteria: No element of Bas('V') is a proper
sub-image of any other element ofBas(¥) (Dougherty
and Haralick, 1991b; Maragos, 1989).

In two-dimensional image noise filtering, N ran-
dom variables are considered as the functions of a
window mask with size N which slides the image
from left to right and top to bottom. For example, a
3x3 window mask is a filter of size 9, where the
origin is located at the center of window mask. Simi-
larly, the basis of a morphological filter is the
collection of window masks which are operated on the
image.

The value of MSE for a general N-observation
morphological erosion filter in Dougherty (1992) is
defined as

MSE('P)
=E[|z- ¥ (X[1],XI2],..., XIND}1;

2
=E[|z-nthx{min 6071 ali, j1= 1)} 1:

=Z{ ful1), 121, ..., 2): el mineL 1 i L }2} ,
o @

'Han, C. C. and K. C. Fan (1996) Finding of optimal binary morphological erosion filter by heuristic search methods. Submitted to Cricuit,

Systems and Signal Processing.
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where f(x[1], x[2], ..., x[N], 2) is the density value for
the N-observation random variables and the estimated
random variable Z. Finding the optimal N-observation
filter is now reduced to the problem of selecting the
subset of 2" structuring elements that yields minimum
MSE<¥>. We need a tremendous amount of time to
compute the MSE values over all the possible basis
combinations and to make-comparisons among them
to pick out the optimal solution. To illustrate the
generation of an optimal binary morphological erosion
filter, let us consider a three-observation filter in the
following example.

Example 1. The probabilities and density values
Sfix[1], x[2], x[3], z) which are generated by three
random variables X[1], X[2], X[3] and an estimated
random variable Z are given in Table 1(a). From Eq.
(2), errors will occur in the situation where the esti-
mated realization z differs from the eroded result in-

dicated by symbol ‘x’ in Table 1(b) and where the MSE
value for each basis element can be calculated by
summing the density values marked by %’. Thus, the
MSE values for all possible basis element combinations
are computed and listed in the bottom row of Table 1(b).
In this illustration, the basis element {100} with the
smallest MSE value 0.636 is assigned as the optimal
morphological erosion filter.

2. Construction of Error Code Graph

A graphic search-based method was proposed by
Han and Fan (1994) to decrease the searching time for
an optimal morphological erosion filter. Now, we will
give a brief review of the graphic search-based algo-
rithm in this subsection.

From Eq. (1), the errors eroded by a basis Bas(¥)
indicated by symbol ‘x’ in Table 1(b) for each binary
input realization are encoded as the attribute ECV of

Table 1. (a) The Probabilities and Density Values (b) The Errors of Erosion for a 3-observation Filter

(a)
x[11, x[2], x[3], z Probabilities x[11, x[2], x[3], z Probabilities
0000 0.156 1000 0.061
0001 0.301 1001 0.547
0010 0.020 1010 0.008
0011 0.034 1011 0.061
0100 0.480 1100 0.188
0101 0.018 1101 0.033
0110 0.062 1110 0.024
0111 0.002 1111 0.004
(b)
Basis
001 001 00r o010 010 O11 O11 011 101 011 001
¥,z 000 001 010 011 100 101 110 111 010 100 110 100 101 100 101 110 110 101 010
110 100
0000 x
0001 X X X X X X X X X X X X X X X X X
0010 x X X X X
0011 X X X X X X X X X X X X X
0100 x X X X X X
0101 X X X X X X X X X X X X X
0110 x X X X X X X X X X X X X X
0111 X X X X X
1000 x X X X X X
1001 X X X X X X X X X X X X X
1010 x X X X X X X X X X X X X X
1011 X X X X X
1100 x X X X X X X X X X X X X X
1101 X X X X X
1110 x X X X X X X X X X X X X X X X X X X
1111
MSE - 1.013 1.697 1.080 0.636 0.967 1.175 1.020 1.630 0.682 1.168 1.158 1.644 0.696 1.027 1.235 1.123 1.1821.144

% =(x{11, x[2], x[3])
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Table 2. The Error Code Value ECV for a 3-observation Morphological Filter

realization ECV

basis 111 110 101 100 011 010 001 000 EC‘V(IG) MSE
001 0 1 0 1 0 1 0 1 55 1.013
010 0 0 1 1 0 0 1 1 33 1.697
011 0 1 1 1 0 1 1 1 77 1.080
100 0 0 0 0 1 1 1 1 OF 0.636
101 0 1 0 1 1 1 1 1 SF 0.967
110 0 0 1 1 1 1 1 1 3F 1.175
111 0 1 1 1 1 1 1 1 TF 1.020
001 010 0 0 0 1 0 0 0 1 11 1.630
001 100 0 0 0 0 0 1 0 1 05 0.682
001 110 0 0 0 1 0 1 0 1 15 1.168
010 100 0 0 0 0 0 0 1 1 03 1.158
010 101 0 0 0 1 0 0 1 1 13 1.644
011 100 0 0 0 0 0 1 1 1 07 0.696
011 101 0 1 0 1 0 1 1 1 57 1.027
011 110 0 0 1 1 0 1 1 1 37 1.235
101 110 0 0 0 1 1 1 1 1 1F 1.123
011 101 110 0 0 0 1 0 1 1 1 17 1.182
001 010 100 0 0 0 0 0 0 0 1 01 1.144
f(%,0) 0.024 0.188 0.008 0.061 0.062 0.480 0.020 0.156

f(%,1) 0.004 0.033 0.061 0.547 0.002 0.018 0.034 0.301

-f(%, D+ f(%,0) 0.020 0.155 -0.053 -0.486 0.060 0.462 -0.014 -0.145

Bas(¥) . These ECV and MSE values are also listed. .

EXT(Bas(¥))={%:%Aj=5,5 € Bas(¥),

in the rightmost two columns of Table 2. Second, an ¥e U},
error code graph (ECG) is constructed as a directed RED(A)=A\{X:X€A, dye€A, X#7,IAy=5y },
graph with 2"—1 vertical levels for an N-observation and

filter. In the ECG, the basis elements are written inside
the circle for each vertex and the attribute ECV ex-
pressed in hexadecimal form is shown below the circle.
Only a vertex called the maximum node with an error
code vector of one ‘0> and 2"—1 ‘1’ bits is located in
the leftmost level, called level 2"—1 whereas a mini-
mum node with 2¥~1 ‘0’ and_a ‘1’ is located in the
rightmost fevel, called level 1. Furthermore, only one
bit is converted between the attributes of two contigu-
ous levels.

Traditionally, it seems that we should construct
the ECG first and then find the optimal solution from
this constructed graph. Actually, it is not necessary
to construct the ECG before searching for the optimal
solution. Consider the current basis element Bas, (V)
and its successor Bas,(V); the basis element of node
Bas,(¥) can be obtained based on the following
manipulation:

Bas,(¥) = RED (EXT (Bas,(¥)) U {1 }),
and ¥ € CAN(Bas,(¥)), 3)

where

CAN(Bas,(¥))={ %:x € U\EXT(Bas (%)),
EXT{X ){% } < EXT(Bas,(¥)), ¥#null vec-
tor}.

If we want to find the optimal basis whose MSE
value is a minimum, we can search the ECG to find
an optimal path with the minimal cost from the root
vertex Bas,,.,(). Thus, the MSE value for the optimal
node is

MSE <BASopt1mal(\F)>
=MSE(Bas, . (‘F)) + the cost of path from node

BASmax(\P) to BASoptimal(\P)- (4)
3. Graph Searching Algorithm via the Greedy
and .Branch and Bound Techniques

Traditionally, a search for an optimal solution in
graph theory needs to traverse the arcs and vertices at
least once. Fortunately, since the ECG satisfies some
greedy properties which will be described below, we
do not need to traverse all the vertices and arcs.
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Greedy Property: While searching the ECG, if the
current vertex Bas,(*V) is on the optimal path and at
least one vertex is connected to the current vertex via
a negative cost arc, which is called the greedy condi-
tion, then the successor traversed via the arc with the
smallest negative cost is also on the optimal path.

If the costs of the arcs satisfy the greedy criterion,
it is easy and clear to determine which arc and vector
should be chosen. However, when the greedy condition
is not satisfied, e.g., the costs of the candidates are all
positive, called the undecidable condition, the branch
and bound (B&B) method is applied by making use of
stack or queue architecture.

Example 2. To illustrate the searching process, let us
consider the ECG inFig. 1. According to the searching
principle and greedy properties, let us start at the
maximum node and select the arc with negative cost,
i.e., arc (101). When the undecidable situation occurs
at node {101} with the costs of candidates (011) and
(110) equaling 0.060 and 0.155, respectively, the greedy
algorithm will fail in this situation. If the vector (011)
is chosen via the greedy rule, the local optimal basis
element {001, 100} with an MSE value equaling 0.682
is obtained by traversing the dotted path. If the B&B
algorithm is utilized in the undecidable case, the global
optimal basis element {100} with MSE({100})=0.638
will be found. When node {001, 100} is reached, the
successors do not need to be examined since the bound
condition is satisfied. Therefore, only nine vertices
instead of eighteen are traversed and examined by
mixing the greedy and B&B algorithms.

Ill. Constraint Satisfaction
Searching Algorithm

In Han and Fan (1994), though the greedy prop-
erty reduces the time spent traversing of a lot of re-
dundant nodes, and the B&B algorithm guarantees that

05
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%01 (|uo)-o<ua%g{"('))
010 00
“r
1 .

1
P

Fig. 1. The error code graph, when N=3.

the optimal solution will be found, a lot of time to
traverse a large number of nodes in the worst case and
many memory spaces are needed to store the informa-
tion in the undecidable cases. In this paper, if all the
arcs are positive, some inference rules and a constraint
satisfaction searching algorithm will be employed to
make sure that the chosen candidate vector is in the
optimal path. Hence, it can also be guaranteed that the
filter we obtain is a global optimal solution, and the
redundant nodes will be ignored via the constraint
inference rules.

1. Transformation of ECG to the Basis Graph

Before describing the inference rules formally, let
us firstly introduce the.basis graph, which was de-
scribed by Dougherty (1992), to explain the following
inference rules and illustrations. The basis graph is
constructed as an undirected graph withN+1 horizontal
levels. For instance, the basis graph for N=3 is con-
structed as shown in Fig. 2.

Now, let us discuss the generation of a candidate
vector set via the basis graph. In the basis graph, the
vectors of the current basis Bas('¥) included inside the
horizontal-vertical-line circles are a subset of the basis

graph. Furthermore, the extension set EXT(Bas(¥))

of the basis Bas(¥W) as shown in the dotted area is also
a subset of the basis graph. Based on the current basis,
the vectors in the candidate vector set CAN(Bas(¥))
as shown inside the circles with horizontal line patterns
are generated according to Eq. (3). Furthermore, the
vector of the basis graph can be considered as the arc
of the ECG, whose cost is displayed below the corre-
sponding vector. While searching for the optimal filter,
the basis graph can be adopted to illustrate the search-
ing status of ECG.

The following example demonstrates the status
representation of the ECG via the basis graph.

Example 3. Consider the basis element {101, 110}
shown in Example 2, which is the element inside the
circles with vertical and horizontal line patterns in the
ECG. According to the generation rules of the can-
didate vector set, the candidate vector set CAN({101,
110})={011, 100} drawn inside the horizontal-line-
pattern circles is obtained as shown in Fig. 2(a). Due
to the greedy property, the vector (100) with the smallest
negative cost is chosen as the candidate vector to form
the new basis {100} with extension set {100, 110, 101,
111} as shown in Fig. 2(b).

As stated above, the arc in the ECG is a node of
the basis graph. The illustrative examples in the rest
of this paper will be based on the four-observation
filter. However, if N>4, the ECG is too large and
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Fig. 2. The generation of a candidate vector set and the represen-
tation of the ECG.

complex to be displayed due to space limitations.
Therefore, the basis graph is adopted to represent the
searching status of the ECG.

2. Constraint Inference Rules
According to the generation rule of the candidate

vector set as stated in Eq. (3), a vector # can be
chosen as a candidate vector after all the vectors in its

extension set EXT({# }) have been selected. Hence,-

while searching for the optimal path, if vector # is
chosen as an element of the optimal path, we must
pay the costs of all the density values of vectors
which are in the extension set but have not been tra-
versed. Based on the above observation, thedemanded
cost for vector % in the remaining set is defined as
follows:

Definition 1. (Demanpep Cost) Consider the current
basis set B’As(‘}‘) and a vector .i, called the demanded
vector, in the remaining set U\Bas(*¥). The demanded
cost for this vector # is defined as

pc(#)=X {(-f(¥, D)+ f(5,0): e EXT (&)
\(EXT (@) BAs(W)) }, (5)

where — f(0, 1)+ f(0,0) =0. That is: we have to pay
the cost DC(#) before searching for the demanded
vector & .

In the above definition, the demanded cost
DC(%) may be negative or positive. Furthermore, the
cost —f(0, 1)+ £(0,0) equals zero because the null
vector 0 generates a zero result and never appears in
the optimal path of ECG. Note that: the cost of each
vector and the demanded cost for each vector for the

status representation via the basis graph are displayed

as the first and second items below the corresponding
vector, respectively.

Now let us begin to describe the constraint sat-
isfaction searching algorithm. While traversing the
optimal solution in the ECG, if the undecidable con-
dition of the greedy condition occurs, we choose vector
X, which is an element of the extension set EXT(i)
of vector # with the minimum demanded costDC() .
Thus, the principle of the constraint satisfaction search-
ing algorithm is to choose the satisfied candidate vector
X to reach vector # with the minimum demanded cost
DC(#) as quickly as possible. If two vectors X¥ and
¥ belonging to the candidate vector set CAN(Bas(\V))
possess the same minimal demanded cost, then we
choose the vector which possesses the second smallest
demanded cost as the candidate vector.

Before stating the formal definitions for the in-
ference rules, three set definitions are firstly stated for
the later descriptions of the inference rules.

Definition 2. (AssociaTED SET) An associated set
ASQO(X%) for vector X in the candidate vector set, i.e.,
X¥e CAN(Bas(?)), is a collection of vectors that sat-
isfies

ASO(X)={y:XxAy=5 ,yeUEXTBASCY)}. (6)

The associated set ASO(X) for vector ¥ can be con-
sidered as a subset of the remaining set U\EXT(Bas('¥)).
Those vectors belonging to set ASO(X) can not appear
before vector X in any path of the ECG.

Definition 3. (DEMANDED VECTOR SETS/CONSTRAINT
CANDIDATE VEcTOR SET) The family sets of the de-
manded vector set and constraint candidate vector set
are defined in the recursive form:

DVS (Bas(Y))

DVS,=U\EXT(Bas(¥));
= DVS,-+1={UJM=1ASO(XJ)}\ASO(ﬁ,), ¢))]
fori=0,1,2,..;

and
CAN{(BAS(P), 7)) = CAN (Bas(¥)) VEXT (&),
for i=0, 1, 2, ..., (8)
where #; € DVS,, x;eCANS(Bas(¥), #,) , and the size
of the i™ constraint candidate vector set is larger than

one, i.e., CAN,.C(BAS(‘P), ﬁ,)| =M>1. Here, vector i,
called the minimal demanded vector, satisfies
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DC( 1) =min {DC(V,): ¥, e DVS;}<0.

In Definition 3, the i"® constraint candidate vector
set CAN,-C(BASCI’) , 1,) is defined as the intersection of
the candidate vector set CAN(Bas(¥)) and the exten-
sion set EXT(#%,) of the minimal demanded vector #,
in the i® demanded vector set DVS,. These three set
definitions are stated with an eye to choosing the
candidate vector correctly for the undecidable case of
greedy property. The selection criterion is described
in the following theorem.

Theorem 1. (INFereNCE RurEk I) Suppose the current
basis Bas(¥) does not satisfy the greedy property while
searching the ECG. Consider two vectors #; and 7,
in the i"™ demanded vector set DVS;, where #,# 7, and
i=0, 1, 2, .... The vector i, is assumed to be the vector
with the smallest negative demanded costpc( #;) in set
DVS;. If vector ¥ belonging to sets EXT(V,) and
CAN(Bas(¥)) but not belonging to set EXT(#%,), i.e.,
y ECAN,-C(BAS('P), %) , is in the optimal path, a vector
X belonging to the sets EXT(#%;) and CAN(Bas(¥)),
i.e., ¥ eCANS(BAS(Y), i) , is also in the optimal path.
That is, the candidate vector of the optimal path is an
element of the i™ constraint candidate vector set
CANS(BAS(Y), 7,) .

According to the above theorem, we choose
those vectors which belong to the 0™ constraint
candidate vector set CANg(BAS(‘I’), fig) as the candi-
date vector to put into the optimal path for the
undecidable situation of the greedy property, where
vector i, is the minimal demanded vector with the
smallest negative demanded cost DC(#,) in the
initial demanded vector set DVS,. If the size of the
0" constraint candidate vector set is larger than one,
we generate the next demanded vector set DVS; to
delete the impossible vectors. The truncating operation
is repeated until the size of the i constraint candidate
vector set CAN(BAs(Y), #,) is equal to one or until all
the demanded costs in set DVS; are positive. If the
former condition is satisfied, we can easily decide

(+00,#00) (+00,400) (+02,+02) (+00,400) (+004+00) (+0.2,+02)

@)
(-0.16,+0 04) (-0 17,+0 03)

(0 14,40 06) (+0 1,+0 3)

(-0 02,-0 09)

Fig. 3. A contradictory example of Theorem 1.

-ence rule I as shown in Fig. 3.

which vector is to be put into the optimal path. On
the other hand, if the latter condition occurs, the trun-
cating operation via inference rule I will also be ter-
minated. This case will be discussed in inference rule
1I.
Next, let us consider the contradiction of infer-
In Fig. 3, vectors
@, b, ¢, and d included inside the horizontal-ver-
tical-line circles are the elements of the current basis.
Vectors ¢ and f belonging to the candidate vector
set are drawn inside the horizontal line circles. Fur-
thermore, the cost of each vector and the demanded cost
for each vector are shown below the corresponding
vector. In the first competition, vectors ¢ and 7 are
both winners to be kept for the next competition. In
the second competition, since all the demanded
costs in the 1% demanded vector set DVS,=
{e,f,8.,h.,7,7) are positive, the selection process
making use of inference rule I will not work well. If
vector f is chosen as the candidate vector due to the
minimum demanded cost +0.03 in set DVS, the optimal

solution obtained by selecting vectors ¢,%, and h
will be missed. Therefore, another inference rule will
be developed and defined in the next definition to tackle
this problem.

Definition 4. (MuLti-DEMANDED Cost) If all the
demanded costs pc( ¥;) in set DVS; are positive, a multi-
demanded cost for a vector # in the i demanded vector
set DVS; is defined as follows:

0
MDC(Z’[):
2 {DA(7):yeX;}~ (M ~1)xDC(X)
if M=1,2,3,...,

&)

where X;={5:—f(3,D)+f(3,0)<0 , pC(§)< DC(%),
yAau=y, HAM(%,5)=1}, and the integer number M
is the size of set X;. Here, vector % is called the multi-
demanded vector in set DVS,.

For the sake of simplification, the collection of
multi-demanded vectors is also called the demanded
vector set as in Definition 3. Thus, the definition of
the demanded vector set given in Definition 3 will be
modified accordingly.

Definition 5. (DemaNDED VECTOR SETS: MopiFiep) The
family sets of the demanded vector set are defined in

the recursive form:

DVS(Bas (P))
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DVS, = U\EXT(Bas (¥));

={ DVS;, ;= {ULASO(Z )}\ASO (&), (10)
fori=0,1,2,...,
where  #,eDVS, %;€CAN'Bas(¥), @) , and

|CANf(BAS (¥), %,)| =M>1. The criteria for selecting
vector i; are modified as follows. Consider the mini-
mal demanded vector @ whose demanded cost satisfies
DC(@)=min {DC(V): V; eDVSi}, and the multi-de-
manded vector b whose multi-demanded cost satisfies
MDC (b)) =min {MDC (¥,): ¥, €DVS;} ; the selection of
vector #, is defined as

a if pc(a)<0;
#,=¢ b if pc(a)=0,Mpc(h)<0;
null otherwise ,

(11)

In addition, the i constraint candidate vector set is not
changed.

From the above definition, when the undecidable
case of inference rule I occurs, the multi-demanded cost
MDc( % ) can be considered as the extra benefit after the
vector # has been chosen as an element of the optimal
path. If the value Mpc( %) is negative, the traversed
path will enter the node with an MSE value smaller
than that of the current node. On the other hand, if
the Mpc( # ) is positive, the following theorem is adopted
to select the candidate vector correctly for the
undecidable case of inference rule I.

Theorem 2. (Inrerence Rurk II) If the greedy con-
dition and inference rule I are not satisfied while
searching the ECG, i.e., no vector in the candidate
vector set is negative and all demanded costs of vectors
in the i™ demanded vector set DVS, are positive, then
the candidate vector of the optimal path must be an
element of the i® constraint candidate vector set
CAN{(Bas (¥), @) .

Theorems 1 and 2 are very similar in selecting
the candidate vector. The differences between
them are the demanded cost and the multi-de-
manded cost formulations. Theorem 2 solves the
undecidable cases of Theorem 1. However, when the
undecidable case of Theorem 2 occurs, i.e., all the
multi-demanded vectors are positive, the terminated
rule must, thus, be developed to terminate the
undecidable condition.

Theorem 3. (INFERENCE RuULE III: TERMINATED RULE)
) If the undecidable situation occurs and inference rules
I and II are not satisfied while searching the ECG, i.e.,
all the demanded costs and all the multi-demanded

costs in the demanded vector set DVS, are positive, then
the ECG will satisfy the following rules:
(1) If i=0, there is no element in the remaining set
belonging to the optimal path.
(2)If i1, all the vectors in the i constraint can-
didate vector set are in the optimal path.
From Theorems 1, 2, and 3, if the undecidable
condition of the greedy property occurs while travers-
ing the ECG, we will be able to select the candidate
vector correctly by making use of these three inference
rules.

3. Constraint Satisfaction Searching Algorithm

According to the description in the previous
subsection, the constraint satisfaction searching algo-
rithm used in searching for the optimal path of the
optimal filter can be formally described as follows.

Algorithm

Step 1: Compute the density values of f{x[1], x[2], ...,
2). There are 2™! items for N observation
random variables and an estimated variable Z.

Step 2:Initialize some values. Assign the starting basis

N

T —
{(11 .. 1)} to tlég current basis element
T —

Bas(¥) and (0,11 . 1) with value 2¥'-
1 to the current error code vector ECV. Then,
compute the MSE value of the current basis
element and assign the current MSE value to
that of the optimal basis element. Moreover,
compute the demand cost and multi-demanded
cost for each vector in the basis graph.

Step 3: Determine the candidate vector set
CAN(Bas(¥)) from the current basis element
and the error code vector to choose the
candidate vector for transiting the vertices
correctly.

Step 4:If the terminated condition is satisfied, termi-
nate the constraint satisfaction searching pro-
cedure. Otherwise, go to Step 5.

Step 5: Choose the candidate vector of the optimal path
from the candidate vector set.

5.1: (GREEDY PROPERTY) If one of the vectors in
the candidate vector set is negative, utilize
the greedy algorithm to choose the vector
with the smallest negative cost as the
candidate vector X%. Ignore the others,
and then go.to Step 6. Otherwise, go to Step
5.2.

5.2:Initialize i=0.

5.3: (INFERENCE RULE I) Assume vector #, is the
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minimal demanded vector. If one of the
demanded costs in the demanded vector set
DVS; is negative, delete the impossible vec-
tors which do not belong to the i constraint
candidate vector set CAN,-C(BAS ¥, u; re-
peatedly. If the size of the i™ constraint
candidate vector set is equal to one, go to'Step
6; otherwise, go to Step 5.4.

5.4: (INFERENCE RULE II) Assume vector #; is the
minimal multi-demanded vector. If one of
the multi-demanded costs in the demanded
vector set DVS; is negative, delete the
impossible vectors which do not belong to
the i™ constraint candidate vector set
CANF(BAS (P), ;) repeatedly. If the size of
the i™ constraint candidate vector set is
equal to one, goto Step 6; otherwise, go to
Step 5.5.

5.5: (InrereNcCE RULE IIT) If i=0, the terminated
condition is satisfied. Terminate the con-
straint satisfaction searching algorithm.
Otherwise, if i=1, choose any vector in
the i"™ constraint candidate vector set
CAN (Bas (), #;) as the candidate vector.

Step 6: Add the candidate vector X to the current basis,
and set the 2" bit of ECV to ‘0’ according to
the definition of the candidate vector set. Then,
add the value — f(%, 1)+ f(X%,0) to the MSE
value of the current basis. In addition, update
the demanded cost and multi-demanded cost
tables accordingly.

Step 7: Compare the new MSE value with the optimal
MSE value. If the new value is smaller than
the optimal MSE value, update the optimal
MSE value with that of the new value, and set
the optimal basis element to the new basis
element.

Step 8: Update the current basis element and MSE value
with the new basis element and new MSE value,
respectively.

Step 9: Repeat Step 3 to Step 8.

4. Illustrative Example

Anillustrative example is given in this subsection
to demonstrate the complete process of the constraint
satisfaction searching algorithm. During the searching
process, the searching status of the ECG for a four-
observation filter is that shown in Fig. 4. Firstly, the
cost of each vector (arc) is shown below the corre-
sponding vector of Fig. 4(a). InFig. 4(a), the sequential
orders of the chosen vectors via the greedy algorithm
are written in the upper-right corner. The local optimal
filter {0011, 1010} is obtained by making use of the

greedy method. From Fig. 4(b)-(e), the undecidable
cases of the greedy property will be given and solved
by using three inference rules.

In Fig. 4(b), the undecidable case of the greedy
condition occurs at node Bas(¥)={0011}, where
CAN({0011})={1100, 1101}. According to the defi-
nitions of the demanded vector set and the constraint
candidate vector set, the minimal demanded vector
(1010) with the negative demanded cost —0.0068
generates the constraint candidate vector set
CANOC({OOI 1}, {1010})={1110}. Since the size of set
CANOC({OOII}, {1010}) is equal to one, vector (1110)
is chosen to join into the optimal path.

After joining vector (1110) into the optimal path,
vector (1010) is then selected as the candidate vector
to obtain the new basis element {0011, 1010} as shown
in Fig. 4(c). At this time, since both vectors (0110)
and (1101) in set CAN({1010, 0011}) and all the
demanded costs in set DVS, are positive, the multi-
demanded cost function and inference rule II are
adopted to facilitate selection of the candidate vector.
In Fig. 4(c), the multi-demanded cost for each vector
is shown as the third item below the corresponding
vector.

Based on Theorem 2 (inference rule II), the multi-
demanded vector (1100) with the smallest negative
multi-demanded cost -0.2096 is obtained to generate
the constraint candidate vector set {1101}. Since the
size of the constraint candidate vector set is equal to
one, vector (1101) is thereby selected as an element
of the optimal path. After the joining operation, vector
(0101) is next chosen to form the basis element {0011,
0101, 1010} as shown in Fig. 4(d).

In Fig. 4(d), the candidate vector set {0110, 1001,
1100} for the current basis element {0011, 0101, 1010}
is obtained to select the candidate vector. In the first
competition, since vector (1001) does not belong to the
0™ constraint candidate vector set, it is deleted by
applying inference rule I. In the second competition,
since all the demanded costs in set DVS, are positive,
the multi-demanded cost function is employed to
construct the 1* constraint candidate vector set
CAN{ ({0011, 0101, 1010}, (1100))={1100} according
to the modified definition of the demanded vector set.
Applying inference rule II, we choose vector (1100)
to form the new basis element {0011, 0101, 1010,
1100}.

Two vectors (1101) and (0110) are then chosen
as the candidate vectors based on inference rule 1.
When the basis element becomes {0011, 0100, 1000}
as shown in Fig. 4(e), the terminated rule (inference
rule IIT) is satisfied. We terminate the constraint
satisfaction searching algorithm. Hence, the optimal
filter {0011, 0100, 1000} is found.
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Fig. 4. The complete searching process of the constraint satisfaction searching algorithm.

IV. Experimental Results and
Discussion

The proposed method has been implemented using
C language on an IBM PC-486. Experiments were
conducted to show the validity of designing the optimal
morphological erosion filter on a personal computer.
The probability value tables were simulated to test the
performance of our proposed algorithm. In addition
to evaluation of the searching time, the effect generated
by the optimal erosion filter was also examined. The

time complexity and memory requirement of our pro-
posed method will be discussed in subsection IV. 2.

1. Experimental Results

The performance of our proposed method was
evaluated by analyzing the searching time required to
find the optimal solution. 10,000 probability value
tables for various observation sizes were randomly
generated and tested by searching the entire space using
our proposed method. Shown in Table 3 is the execu-
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Table 3. The Execution Time for Various Random Variables

N 1 2 3 4 5 6
Traditional - - 0.002741 0.053915 6.16577 >6
Method second second second hours
constraint satisfaction - - 0.002993 0.008634 0.02968 0.1159
Method seconds™ second second second
Greedy and B&B ) - - 0.006684 0.025630 0.43010 180
Method second second second second

tion time taken in finding the optimal basis element
combination. When the number of observation random
variables N was larger than six, the searching time over
the entire space was more than six hours. Thus, it seems
impractical to implement it on a personal computer.
Hence, the estimation times for N>7 are not listed in
this table. From Table 3, we can find that the execution
time used in searching the whole space far exceeded
that of our proposed method.

In addition to performance analysis of the search-
ing time, the results generated by the estimated mor-
phological erosion filter obtained using our proposed
method are also presented. Two binary images cor-
rupted by noise are shown in Figs. 5 and 6. The size
of the structuring element for both experimental ex-
amples was chosen to be 3x3 with the center pixel as
the origin. The ideal images of these experimental
examples are displayed in Figs. 5(a) and 6(a) in 100
and 300 dpi resolutions with the input images to be
processed shown in Figs. 5(b) and 6(b), respectively.

(®)
Fig. 5. Experimental result 1.

———
BEEGE

BEGE BEEE

(e)

Fig. 6. Experimental result 2.

Shown in Figs. 5(c) and 6(c) are the resulting images
processed via the structuring elements which were
estimated by our proposed algorithm. In experiment
1, the optimal filter was composed of ten structuring
elements, where the MSE-value was 5.486071%x107*. In
experiment 2, 100 structuring elements constituting the
optimal filter were employed to generate the resulting
image with MSE=5.702533x10™*. The searching time
taken in finding the optimal filter for experiments 1
and 2 was 4 and 13 seconds, respectively.

2. Time Complexity Analysis and Memory Re-
quirement

The time complexity analysis of the constraint
satisfaction searching algorithm is discussed below.
As mentioned by Han and Fan (1994), we need O(2%)
to generate the candidate vector set CAN(Bas('¥)) for
each traversed node Bas(¥). The searching time needed
to find the optimal filter is O(m-2"Y), where m is the
number of traversed nodes. The value m will be very
large in the worst case. However, the time needed to
obtain the candidate vector set CAN(Bas(¥)) is O(N
- 2M). In order to test whether vector X with n ‘1’ and
N-n ‘0’ digits is an element of the candidate vector
set, only N-n vectors at level n+1in the basis graph
need to be checked. If these N-n vectors are all in set
EXT(Bas(¥)), then vector X is said to be an element
of the candidate vector set. Thus, O(N) is needed to
test whether vector X belongs to the candidate
vector set and O(N - 2%) to generate the candidate
vector set CAN(Bas('¥')). Due to the morphological

filter criteria, there are at most C(N ,l%J) vectors

in the candidate vector set. If these vectors in the
candidate vector set satisfy the greedy property, we

need O(C (N ,l%’-])) to decide the candidate vector.

If the greedy condition is not satisfied, we need
O(2% to truncate the impossible vectors from set
CAN(Bas(¥)) by making use of inference rules

each time. Hence, the time needed is O (C (N , I%J) . 2")
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to obtain the correct candidate vector of the
optimal path. In Han and Fan (1994), the error
code graph is constructed as a directed graph
with 2"—1 levels. Therefore, the total time needed
by our proposed graphic search-hased method

is Ol 2"-N-2VsgC(N,[F)2"2Y) e,
O(C(N,[%J)-ZZN), where ¢; and ¢, are two arbi-

trary positive values.

The memory requirement for our proposed method
is two 22" bits to represent the error code value ECV .
One is for the optimal filter, and the other is for the
current filter. From the error code value of optimal
filter ECVgpimal, the basis element of the optimal filter
can be obtained via the reduction operation. Further-
more, we need 0(2-2“) to store the demanded cost and
the multi-demanded cost tables for each vector in the
basis graph.

V. Conclusion

A novel graphic search-based optimal morpho-
logical filter finding algorithm which avoids examina-
tion of all possible basis element combinations has been
proposed in this paper. The problem of searching for
the optimal filter in an extremely large number of
structuring element combinations is reduced to the
problem of searching for the shortest path in the ECG.
The greedy property and inference rules help us choose
the candidate vector correctly during the searching
process of the optimal path. With these graphic search-
ing techniques, there are at most 2—1 nodes to be
traversed in the ECG. Experiments have been con-
ducted to verify our proposed method. Experimental
results reveal the validity and efficiency of the pro-
posed method in finding the optimal binary morpho-
logical erosion filter.

Appendix

Before the proof of the theorems, a lemma is first described
to facilitate the proof of later theorems.

Lemma 1. Consider the current basis set B as(‘¥) and a vector #
in the remaindered set U\BAS(¥). The intersection set of extension
set EXT( &) for vector # and candidate vector set CAN(B As('V)) 1s
a collection of X ={%:X%e (EXT(#)NCAN(BAS(¥))} . If all the
vectors in set X appear behind vector ¥, of a sub-path ( ¥1,5,, =%
¥.), all the vectors in extension set Y=EXT( #)\(EXT( %)
NEXT(BaAs(W))) for vector # are also behind vector ¥,.

Proof: Assume thata vector ¥, belongs to extension set Y and appears
before vector ¥,. Since all the vectors in set X are behind vector
Y., vector ¥, is not in set X, and a vector ¥ in set X belongs to
set EXT(¥,), i.e., Xe EXT(53,).

Since vector ¥, 1s a candidate vector for basis set B as, (),

te.,, y,e CAN(Bas,_,('¥)), it satisfies the candidate vector set con-
dition:

5, U\EXT(BAS (¥)), and EXT(3 )\ {3} CEXTBAS, _(¥)).

Therefore,
X'EEXT(%)\{S’I)QEXT(BASX_I(‘Y)),
and vector ¥ is a candidate vector of node BAs,_;(‘¥).

Since all the vectors in set X are behind vector ¥,, they will
not be chosen when the basis set is B As,,_;(‘¥). Hence, all the vectors
in set X do not belong to set EXT(B as,_;(¥)). This assertion that
vector ¥, is an element of set EXT( #) is a contradiction. Thus, any
vector ¥, is not a vector of set Y, and all the vectors in set Y are
behind vector ¥,.

Theorem 1. (INFERENCE RULEI) Suppose the current basis B aAs('V)
does not satisfy the greedy property while searching the ECG. Consider
two vectors #, and ¥, in the i demanded vector set DVS,, where
ii,#29, and i=0, 1, 2, .... Vector #, is assumed to be the vector with
the smallest negative demanded cost pc(#,) in set DVS,. If vector
¥ belonging to sets EXT( ¥,) and CAN(BAs(¥)) but not belonging
to set EXT(V,),i.e., y¢ CAN,C(BAS (¥), &,) , is in the optimal path,
then a vector % belonging to sets EXT( %,) and CAN(BAs(W)), i.e.,
Xe CANf(BAS (P), #,) , is also in the optimal path. That is, the
candidate vector of the optimal path is an element of the i™ constraint
candidate vector set CAN,C(BAS ), ).

Proof: In this proof, the contradictory techniques are used. Since
vector ¥ is in the optimal path, the optimal sub-path ( ¥=¥y,52,
..., ¥n) after the current node B as(*¥) can be found.

Suppose no vector in the i constraint candidate vector set
CANS(BAS (¥), @,) is located in the optimal path. Thus, all the
vectors in set CAN,C(BAS (¥), %) must appear behind vector ¥,,
which is the last vector in the optimal path. As a consequence of
Lemma 1, any vector %, inset EXT( &, )(EXT( #,)NEXT(Bas(¥)))=
U™ %, can not appear in the optimal sub-path, i.e., %,#¥, ; 1=1,
2, ..., m; j=1, 2, ..., n. Furthermore, we can find another sub-path
consisting of a sub-path (¥=%;,¥;,%2,..., ¥, (Han and Fan,
1994) and a consecutive sub-path (%;,%;,...,%,= #), where
pC(B,)= L (- f(%,, D+ f(%,,0) <0.

As stated above, the MSE values of optimal node B as, (V)
via the optimal path and the value of node B as, ('F) via the new sub-
path (¥=%,,%1,%2,..., ¥4, %2,...,%,= %,) canbe calculated as
follows:

MSE(BAS,,(¥))
=MSE(BAS (¥)) + the cost of path(¥;,¥5,...,5,)
=MSE(BASCP))+§:1(—f(3‘},,1)+f(3",,0));
= MSE (BAS tyma (P))
MSE(BAS, (¥))
= MSE(BAS (¥))
+the cost of path(X= %, F1 ,V2+-- s TnsFaser-r Epm= 03
=MSE(BAS (P)) + (- f(%,, D)+ f(%,.,0)

+ 3 (5 D450+ & (- £(5, D+ (2, 0)
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= MSE(BAS ;a1 (¥)) + DC (i1,)
<MSE(BAS ma (F)) -

This assertion that any vector X in set CANSBAS (W), &) is
not an element of the optimal path is a contradiction. Thus, there
exists a vector X in set CAN,C(BAS (P), &,) belonging to the optimal
path.

Theorem 2. (INFERENCE RULE II) If the greedy condition and
inference rule I are not satisfied while searching the ECG, i.e., no
vector in the candidate vector set is negative, and all the demanded
costs of the vectors in the i demanded vector set DV §; are positive,
then the candidate vector of the optimal path must be an element
of the " constraint candidate vector set CAN,C(BAS W), ).

Proof: Suppose that vector ¥ belonging to the ™ constraint
candidate vector set CAN;C(BAS W), #)=U'1%; is not an
element of the optimal sub-path (¥; ,¥;,...,¥,) . According to the
results in Han and Fan (1994), there exists a sub-path
(=%, Y1 ,¥25--->Yn-%2,%3 , ..., X,,) which is composed of the
vector X, the optimal sub-path (¥ ,¥2,...,%,) , and the vectors in
the i™ constraint candidate vector set CAN,C BAS(P), @) .

Assume that set X, is the collection of vectors
whose costs constitute the multi-demanded cost MDc(#,),
ie., Xz ={P:-f(¥,1) +f(¥,00<0, DC(¥)<DC(&;), VAl;="W
HAM(@,,v)=1}=U{_ {7 .

Since V;U%=4 , for jk=1, 2,

EXT(%) = EXT(#%) .

>

es 8, j2k, EXT(H) U
Build up a sub-path (X,,,1, Zpe2,....%, =

B, V105V, 05 V1, V21, V22,05 V0,00, V0, Vg, ..., F)  after sub-

path (F=%1, ¥1 .52+ Fn> T2 %3, F)

Now, let consider the MSE values of nodes B as,, (‘F) and Bas, (¥):

MSE(BAS, (¥))
=MSE(BAS (P)) + the cost of path(5; ,%,,...,5,)

=MSE(BAS () + £ (- £(5,, D+ f(5,,0)

= MSE(BAS syl P)) 5

MSE(BAS, (1))

= MSE(BAS (9))
+the cost of path(Z=%y, 31,52, -, ¥4, %2, .. Xp)
+ the cost of path(%,,,1,%,,2,..., X,=0,).

+the cost of path(¥, ,¥5,..., ¥})
+ tl:le cost of path(¥y,Vy,...,%)
=MSE(BAS () + 3. (= £(5,, )+ f(5,,0)+ DC(E)
+DC(¥)~DC(&;)+DC(¥)—DC(B)+...+DC(V)—DC(H,)
= MSE (BAS ypimal(V)) + MDC (,)
<MSE(BAS yma(F)) -
This assertion that any vector ¥ in set CANC(BAS (¥),%,) is not an
element of the optimal path is a contradiction. Thus, there exists

a vector ¥ in set CANC(BAS(¥),#,) belonging to the optimal
path.

Theorem 3. (INFERENCE RULE III: TERMINATED RULE) If the
undecidable situation occurs, and inference rules I and II are not
satisfied while searching the ECG, i.e., all the demanded costs and
all the multi-demanded costs in the demanded vector set DVS; are
positive, then the ECG will satisfy the following rules:

(1) If i=0, then there is no element in the remained set belonging
to the optimal path.

(2)If i21, then all the vectors in the i™ constraint candidate vector
set are in the optimal path.

Proof:

(1) Assume that the path (¥;,¥2,...,¥%,) is the sub-path of the
optimal path after the current node B As('¥) whose cost is
Z:l 13.<0 . These vectors ¥;.¥2,....¥, can be reduced to
aset X= (5‘1'1 ,51'2 +.-.»Vm} which satisfies the morphological
basis criteria, and each of them can be the last element of the
optimal path.

The induction and contradictory techniques are employed to
prove that the summation ZLIS'. is larger than Zero.
Basis: If the size of set X equals one, then the summation
of vectors ¥1,¥2,...,¥, is equal to DC(')"'l) , which is larger
than zero.

Induction: Suppose that the hypothesis is true when the size
of X equals morless. Thatis, Z._; 5:=DC(37.53,..., >0 |
where DC(¥},¥3,.-..,) is the summation of the costs of
those vectors in extension sets EXT(57), EXT(57),
EXT(5'). If the size of the reduced set X equals m+1, the
summation Z?ﬂ}", can be computed as

Z o ~ -’
'g«l Fi=DC(F1:32, -2 Fms Fme 1)

=DC(F1, 5%, Fud #DC (T 1)

_DC(S”IU j’r:ul’yéu yr:n»l""» Sz;u yr:n-rl)'

Since all the demanded costs and ‘multi-demanded costs
are positive, DC(¥,,,1)>0 . Furthermore, if the collection of
EXT (51U Fpsp) s EXT(F20 Fpit)s- .o EXT (50 )
is the subset of collection EXT(5}), EXX(¥5),...,EXN(3,) ,
then DC(J1,32,---,F) >PC(F1U Fra1 2V Fart 4 ooy
ImY Vme1)- Therefore, the summation of vectors
¥1,¥2,---»¥, is larger than zero. This contradicts the as-
sumption.
From the above proof, we can conclude that sub-path
(¥1.92,..-,¥,) does not exist in the optimal path. That is,
any combination of vectors in set DV Sy is not the sub-path
of the optimal path.

(2)From Theorems 1 and 2, there exists a vector in the (i-1)*
constraint candidate vector set which is a vector of the optimal
path. From the conclusion of the above proof, the summation
cost of any vector combination in DV §; is larger than zero.
To reach the optimal node, the minimal demanded vector
i,_) inset DVS,_; must be traversed. Based on this condition,
all the vectors in the i candidate vector set CANf(BAS ). a)
must be selected.
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