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ABSTRACT

This paper presents a practical design and implementation method of multivariable sliding mode
control for magnetic suspension systems in the presence of parameter variations and external disturbances.
Based on the Lyapunov function approach, the proposed design method ensures the existence of a control
law to satisfy the sliding mode condition. The designed controller was successfully implemented in an
experimental magnetic suspension system. Experimental results showed that the system was well under
the control of predeterminate sliding mode dynamics and verified the capabilities of the controller.
Furthermore, this paper provides a real case of experimental study on multivariable sliding mode control.
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l. Introduction

This paper presents a design and implemen-
tation method of multivariable sliding mode control
for magnetic suspension systems in the presence of
parameter variations and external disturbances.
Magnetic suspension systems have been successfully
demonstrated for many applications, including mag-
netic bearings, high-speed trains and material
handling devices (Jayawant, 1988; Matsumura, 1993).
Because of the inherent instability of magnetic su-
spension systems, an active control is usually re-
quired to stabilize systems which in nature are multi-
dimensional dynamic systems. The number of axes
that require active control depends on the system
structure. For example, there are so-called two-axis,
three-axis, and five-axis active control magnetic sus-
pension systems (Matsumura, 1993). For multi-axis
active control magnetic suspension systems, ideally,
multivariable control should be used; in reality,
using the scheme of single-input single-output control
for each axis has been a common practice in the lit-
erature.

In recent years, two well-known robust control
methods, H™ control (Matsumura et al., 1991; Cui and
Nonami, 1992) and sliding mode control (Misovec et
al., 1990; Hwang, 1992; Hwang et al., 1992; Nonami
and Yamaguchi, 1992; Cho et al., 1993) have been
successfully applied to magnetic suspension systems.
Compared with H™ control, sliding mode control is

multivariable sliding model control, magnetic suspension

easier to design and implement. In addition, sliding
mode control can be easily extended to handle the
dynamic nonlinearity inherent in magnetic suspension
systems (Misovec et al., 1990; Hwang, 1992) while H”
control is strictly based on the linear control structure.
Therefore, sliding mode control for magnetic suspen-
sion systems deserves further study. First of all, mul-
tivariable sliding mode control should be employed for
magnetic suspension systems instead of using single-
input single-output sliding mode control as presented
in all the previous work mentioned above. Although
much research work has been devoted to the theoretical
development, analysis and computer simulation of
multivariable sliding mode control in the past decade,
little experimental evaluation exist in the literature
(Hung et al., 1993).

While preparing this article, we found a similar
study (Tian et al., 1994) in which a two-input two-
output sliding mode control was applied to a magnetic
bearing system with experimental results. In the design
method proposed by Tian et al. (1994), parameter
variations are not taken into consideration, and the
characteristics of the system dynamics can not be clearly
defined in a physical sense. The effects of parameter
variations and the physical meaning of system dynam-
ics are two important issues in the design of multivari-
able sliding mode control and should be considered
seriously in any applications.

In this paper, we will propose a design and imple-
mentation method of two-input two-output sliding mode
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control for a two-dimensional magnetic suspension
system, considering parameter variations and external
disturbances. Using this design method, the charac-
teristics of system dynamics can be clearly specified
in a physical sense. Experimental results will also be
included to verify the theoretical expectations. The
organization of this paper is as follows. We will first
specify a magnetic suspension system, which involves
the plane motion of a free body, as our experimental
system, and formulate a state-space representation for
it in Sect. II. Then, based on the Lyapunov function
approach, a two-input two-output sliding mode control
design for the experimental system will be described
in Sect. III. In Sect. IV, we will describe how the
designed controller is implemented by a digital signal
processor, and then present experimental results to
verify the capabilities of the designed controller in
Sect. V. Finally, conclusions will be given in the last
section.

Il. System Description and Modeling

The configuration of the experimental system
in this study is shown in Fig. 1. It is a two-dimen-
sional magnetic suspension system which represents
the plane motion of a free body under the control
of electromagnetic forces. Such a plane motion
often exists in general magnetic suspension systems;
one typical example is the horizontal or vertical
plane motion of a rotor in a magnetic bearing sys-
tem.

In Fig. 1, the moving bar is constrained to trans-
late only in the x-direction (vertical direction) and to
rotate only about the y-axis. Two fixed electromagnets
located at the opposite ends above the moving bar
generate the forces f; and f, to control the air gaps x,
and x, between the electromagnets and the moving bar,
by which the location and orientation of the moving
bar can be specified. Letx, represent the translational

Left Electromagnet Right Electromagnet
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Fig. 1. Configuration of the experimental system.

displacement of the mass center of the moving bar from
the reference line indicated in Fig. 1, and let ¢ be the
rotational displacement of the moving bar from the
reference line. Then, the equations of motion for the
system are

M, =Mg- f—f (1)
and J@= f Lcosp — f Leosp, )

in which M is the moving bar mass, g is the acceleration
of gravity, J is the moment of inertia of the moving
bar about the y-axis, and L is the distance from the mass
center to the point on the moving bar at which the
control force f, or f, is applied. It is assumed that the
mass center of the moving bar coincides with its
geometric center. For small perturbations, the follow-
ing geometrical relations are valid (Youcef-Toumi and
Reddy, 1992):

x=x+L¢
x =x.~L¢

=5 (x+x,). 3)

Thus, Eq. (2) can be approximated by

J(X5-%)
T =54 4)
The control force f, generated by the left electromagnet

is modeled by the following equation (Hebbale,
1985):

Uy AN I?
ﬁ=—£x"%l_lv 5)

where [, is the permeability of free space, A, is the
air gap area of one pole, N, is the number of coil turns,
and I, is the coil current. ‘Using the same notations in
Eq. (5), the control force f, generated by the right
electromagnet is expressed by

ANE
p=tm ©)

Substituting Eqs. (3), (5) and (6) into Egs. (1) and (4),
we obtain

ol ol
B R ™

Xi r

M (x4 %)= Mg-
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2
= (8)
1

where =404 N’/2 and o,=fipA N’ /2. The correspond-
ing state equations are

Xy=xy

iy=g—(1+ ML )[qu2

JZ:1r=x2r
(1——)[ *12 1
2

or?

Mg

where x,;=x;, x|,=%,, and a=0;=0,.

At an equilibrium position x;=x;,=xy, let the
corresponding coil current be I;=I,=I,. Thus, around
the equilibrium point (xy, Ip),

9

X1=Xgptey
X1,=Xg+€yr
11=10+il
I=Iy+i,, (10)
where ey, €q,, i; and i, are the small perturbations of
the quantities x;, x;,, I; and I,, respectively. Linear-
izing the state equations of Eq. (9) about the equilib-
rium point (xy, Ip) gives the following linear state
equations in matrix form:
E=AE-Bu, (11)

where E=[ey; ey ey, ea,]", u=[i; i,]7,

0100
_|an 0 a3 0
A=100 0 1]

ay 0 a5 0

Ly £/ 5% and

in which 6121—(143—( 1 +

azp=as= (1-

MI*., 8, /Mg
T)(,—O)\/ﬁ,

00

by b
and B= (2)1 (2)2 , 1nwhlchb21_b42_(1+ )( )
by by

ML, 8
= =(1-ZE2)(8) .
and b22 b41 ( 7 )(IO )

When considering external force disturbances, Eq. (11)
is modified as

E=AE-Bu+D, 12)
where D=[0 d; 0 d,]", in which d; and d, represent
external disturbing forces.

The experimental system based on the configu-
ration of Fig. 1 has been built; its mechanical structure
is shown in Fig. 2. We have also made an optoelec-
tronic position sensor to measure the air gaps x; and
Xx,, the circuit diagram of which is shown inFig. 3, in
which the optoelectronic device PL2826 is from
Hamamats Co. in Japan. The sensitivity of the sensor
is 1.8V/mm, and the noise level is about 4mV peak-
to-peak. Two U-shaped electromagnets fixed at op-
posite ends above the moving bar are identical and are

“driven by a current-source power amplifier whose

maximum current is 2.5 amperes. The moving bar is
made of an aluminium bar with a piece of ferromagnetic
material mounted at each end. The mass of the moving
bar is M;=1.86 kg, and its moment of inertia is
J;=0.02445 kg-m*. Both the mass and the moment of
inertia can be changed by placing an additional weight

S
T
I8l

o

T
ITHTI

BN
1)

i

i

(D Electromagnet @ Linear guide

@ Position sensor @ Ball bearing

@ Frame ® Moving bar

Fig. 2. Mechanical structure of the experimental system.
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Fig. 3. Circuit diagram of the optoelectronic sensor.

Table 1. Parameters of the Experimental System

Area of one magnetic pole (A) 0.0004 m?

Number of coil turns (N) 700

Dimension of moving bar (L) 0.135 m

Mass of moving bar (kg) M,=1.86 kg
My=2.767 kg

Moment of inertia of moving bar (J) J1=0.02445 kg-m?
J»=0.02667  kg-m®

of 0.907 kg on the moving bar, resulting in M,=2.767
kg and J,=0.02667 kg-m®>. The parameters of the
experimental system are summarized in Table 1.

lll. Sliding Mode Controller Design

As usual, the design procedure consists of two
major phases: the first phase is construction of a set
of switching functions so that the desired sliding
dynamics can be obtained; the second phase is finding
a control law such that the so-called sliding mode
condition can be satisfied.

In constructing a set of switching functions, we
first treat the system of Eq. (12) as single-input sub-
systems; namely, a right subsystem and left subsystem.
The right subsystem is associated with the inputi, and
the output ey,; the left subsystem, the input i; and the
output e;;. Then, we define the switching functions as

s,=cy€ey,+e,, for the right subsystem
and s=cie+ey for the left subsystem, where c¢;>0.
The same sliding mode dynamics are expected for both
subsystems because the same parameter ¢, is used in
both switching functions. Consequently, the dynamic
characteristics of the whole system can be clearly defined
by a single characteristic equation as

ce(t)+e(1)=0, (13)

where e(f) represents a position error at any point on

the moving bar. The switching functions defined above
can be represented in matrix form as

S=CE, (14)

100
where S=[jﬁ], C=[i)1 0¢ 1 ] and E=[ey; ey €y, €,]".

The controller design is based on the Lyapunov
function approach. For a multivariable sliding mode
control system, a useful Lyapunov function has proven
to be difficult to find (Utkin, 1978; DeCarlo et al.,
1988). Fortunately, we have found that the system in
this study possesses a special property, that is, the
matrix (CB)™', where B is the gain matrix of the system
of Eq. (11) and is a positive-definite symmetric matrix.
Based on this finding, we obtain a useful Lyapunov
function candidate. The following is given to prove
that the matrix (CB)™ is a positive-definite symmetric
matrix:

00
CB:[CI 10 0} by by =[b21 bn}
00c¢1yjf0 O by by,

by by

(CB)! =[”2l b22]_1 =[Ell EZ],

by by, by by
— 1 7 L A
where b11= b22=(é)(1+m) ) b12= 21:(5)
J
o(1-—L2).
( ML2)

The determinant of (CB)? is

ok L
|(CB) |_(§ >0

In addition, 5,,>0. By the Sylvester criterion (Chen,
1984), (CB)"! is a positive-definite symmetric matrix.
A Lyapunov function candidate is defined as

V(S)=%STRS, (15)

where R is a positive-definite symmetric 2x2 matrix.
If

V(S)<0, (16)
then S approaches zero asymptotically, and the sliding
condition is satisfied (Utkin, 1978). From Eqgs. (12)
and (14), the time derivative of V(S) becomes
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V(S)=S"RS=STR[(CAYE-(CB)u+D]. (17)

Let R=(CB)'; then Eq. (17) becomes

V(S)=ST[(CB)Y ' (CA)E]-STu+ST(CBY'D.
(18)

The term S"u=s,i,+s;i;in Eq. (18) shows that the control
inputs i;and i, are decoupled with respect to the switching.
functions s, and s,, so that the existence of a proper
control law to satisfy the sliding condition V(5)<0 is
ensured. The control law is designed as

i=(kpeytkaey )+ KiE+k z+msign(sy), 19)

in which k,; and k; are constant gains, K;=[ky; ky; k3;
t

ks is the switching gain matrix, z,=fo ey dt, sign(s))

1 i .
={i1 :1{ ji:g , ky;, My are both switching gains, and

i,=(ky e +kge7 )+ K E+k, z,+1,sign(s,). (20)

The meaning of the symbols in Eq. (20) is exactly the
same as in Eq. (19). Substituting Eqs. (19) and (20)
into Eq. (18), we obtain
V(S)=[(ay by +ay by —k,y)—kyleys
+[Chyey—kg)—kyleys
+[(ay by +anbp )—kyle, s
+(bppor—ky) ey 5=k z s
+[(byd;+ Dpd,)—ysign(s)]s
+[(ay by +ay b))~ ki 1eys,
+( b yc—ky ) eys,
+[(ay by +apbyn—k, )=k ley,s,
+[(bype ‘qu )—ky 1€y 5= ks, 2, 5,
+[( by dy+ 71722d, y—1,sign(s,)]1s,. (21)

In order to satisfy V(S5)<0, the control gains are chosen
as
ki >max (ay by +ay by — kpi)
k when ey 5>0
=Y - : - -
ky<min(ay by +ag by —ky)
when e;5<0

k;l>max(‘5—1101_kdl) when 621s1>0
ky<min( Byyc —ky) when eys5<0

k;l <min ( a23?11 + a43312 ) When €y 5 <0

kzl > max( _512 (4] ) when €y, 8> 0

k21 = {

k {k;l>max(a23?11 +a43.—512 ) when €, Sl>0

3=

ky={ 7
g<min( byyc;) when e, 5<0

_ k>0 when z,5>0
517\ k5;<0 when z,5<0

nl >maX( 711dl+ ?lzdr) Vsl

. —_ —_
kl - k1,>max(a21 b21 +as b22 ) when eus,>0

r - . T T
klr < fmn( [253] b21 +ay b22 ) when ey s, <0

k= §,>max(___52161) when e, 5,>0
"\ ky, <min( b,c,) when eys <0

+ — —
k3, > max ( ays b21 +ay3 b22 _kpr)

P when e, s,>0
3r= - . - -
k3, <min(ay; by +ag3 by —kyr )

when e, s, <0

= k; >max( byc,—k; ) when e, s,>0
4"\ kg, <min( Byc; —k; ) when e, s, <0

_ | k5,>0 when z,5>0"
>~ \k;,<0 when z,5,<0

N,>max( by d;+ byd,) Vs, (22)

Several remarks are made below about the above design

method:

(1) The control law of Eq. (19) can be divided into two
parts: one part which comprises ke ; and kyzey
is called the continuous part because k,; and k;; are
constant gains which must be specified before the
switching gains are determined; the oﬁher part which
comprises the remaining terms with switching gains
is called the switching part because all the gains
in this part are switching gains. The continuous
part shall be implemented by an analog circuit to
help stabilize the magnetic suspension system in
a continuous-time base while the switching part
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shall be implemented by a microcomputer because
this part needs a considerable amount of algebraic
computation and logic decision. When a sliding
mode controller is implemented by a microcom-
puter, the chattering problem, which is associated
with oscillation of output response mainly due to
switching control actions, becomes more severe
because of sampling effects. From our long-time
observations, we have found that the chattering
problem can be significantly improved by introduc-
ing this continuous part in the control law. The
same statements can be made for the control law
of Eq. (20).

(2) In the control law, the switching term k;E or k,E
can take care of the variations of the system pa-
rameters. On the other hand, the integral term

t ¢ .
kz,f ey dt or ky, A e, dt is used to accomodate a
0

step-type disturbance and to reduce the steady-state
error while the term 7;8ign(s;) or 1,sign(s,) is given
for other types of disturbances if needed.

(3) The decoupling of control inputs with respect to
switching functions is usually accomplished by the
so-called diagonalization method proposed by Utkin
(1978). The diagonalization method involves a
non-singular transformation of switching functions
such as S*=Q(CB)'S, where S is the original
switching function vector, and Q is a constant
diagonal matrix. When the matrix B has uncertain-
ties, using the transformed switching function vector
§* in implementation is impractical. Thus, the
diagonalization method is not applicable to this
stu&y.

IV. Controller Implementation

The equilibrium position xp=Imm and the corre-
sponding coil current [;=0.436 amp were used in this
study. In the control laws of Egs. (19) and (20),
kyi=k,,=657.5, ky=kg4=0.75 were chosen for the con-
tinuous parts. The value of each element in the switch-
ing gain matrix K] or K, can then be determined by Eq.
(22), once the value of the parameterc, in the switching
functions s; and s, is decided. Two values of the
parameter ¢; (c;=10 and 40) were used in the experi-
ments in order to demonstrate that the system dynamics
were really controlled by the sliding mode dynamics
of Eq. (13). As for the integral gaink, or k,,, its value
was tuned on-line because there is no theoretical
constraint on this value as shown in Eq. (22). Due to
the lack of adequate hardware in the experimental
system, experiments concerning external force distur-
bances other than a step-type disturbance could not be
conducted; therefore, the term n;sign(s;) or 7,sign(s,)

for disturbance rejection was omitted in the controller
implementation.

The continuous part of the control was imple-
mented by analog circuits of a few operational ampli-
fiers while the switching part was implemented by a
single TMS320C25 digital signal processor. The con-
trol program in TMS320C25 assembly language was
written to compute the control law and was stored in
the TMS320C25 system board which resided in a
personal computer. The execution time of the control
program was less than 1 ms; thus 1 ms was taken as
the sampling period.

In executing the control program, both position
and velocity information about the moving bar was
needed. The position signals were provided by the
optoelectronic position sensors, and the velocity sig-
nals were obtained from the rate of change of the
position signals, using an analog circuit or digital
computation.

V. Experimental Results

The experimental objective was to stabilize the
moving bar horizontally at a distance of 1mm below
the reference line, that is, x;(left air gap)=x,(right air
gap)=1 mm. Meanwhile, it was expected that the
response x; or x, should be governed by the sliding mode
equation ¢ é(f)+e(#)=0 in Eq. (13). Because the sliding
mode equation was a first-order differential equation
with the adjustable parameter ¢, no overshooting was
expected.

Figure 4 shows the position response of the moving
bar from an initial position, when the parameter cj=40
is used for the sliding mode equation. Such a step
response is described by the measured responses of x;
and x, from the initial value of 1.45 mm to the desired

Position{mm)

0 01 02 03 04 05 06 0.7 08 0.9 1

Time(sec)

Fig. 4. Step response of the moving bar described b); air gap re-
sponses of x; and x,.
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value of 1 mm. Two response curves in Fig. 4 are nearly
identical and both exhibit no significant overshooting.
So, this experimental result agrees well with the theo-
retical expectation because the responses of x; and x,
were under the control of the same first-order sliding
mode equation. The steady-state error responses as-
sociated with the response curves of x; and x, in Fig.
4 are shown in Fig. 5. A test similar to the previous
one was conducted, but with two different values of
the parameter ¢, for the sliding mode equation. The
test results are shown in Fig. 6. For the response of
x; in Fig. 6, two curves with a significant difference
in speed of response are associated with two different
values of ¢;. This further demonstrates that the system
respouse was effectively controlled by the predeter-
mined sliding mode equation, which was specified by
the value of ¢;. In order to test the controller robustness
against the simultaneous presence of parameter varia-

001
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|I-‘os)t‘u:m error
o
o
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N o
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] 00L 002 003 004 005 006 007 008 009 01
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Fig. 5. Steady-state error response of x; and x,.

Position(mm)
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E -lf e
g -
g -
°
2
$ cl= 40
B el= 10
-1.8 + L L
0 0.1 0z 03 04 0.5 06 07

Tune(sec)
(b) Response of x,

Fig. 6. Step responses of the moving bar with different sliding mode
dynamics.

tions and a step-type external disturbance, a weight of
0.907 kg was suddenly dropped on the moving bar
which was being stabilized at the desired position. The
results of this test are shown in Fig. 7. Two response
curves are nearly identical and fulfill the theoretical
expectations again. In all the tests, the steady-state
position error was kept within 0.005 mm, which nearly
reached the resolution limit of the optoelectronic sen-
sor used in the experimental system.

VI. Conclusion

A controller based on the proposed two-input two-
output sliding mode control design method for an
experimental magnetic suspension system was success-
fully implemented by a single unit digital signal pro-
cessor and a simple analog circuit. The experimental
results verified that the experimental system subject to
significant parame:er variations and an external distur-
bance could be reliably controlled by the predeter-
mined sliding mode dynamics, which were clearly
defined in a physical sense. We also found that the
chattering phenomenon inherent in sliding mode con-
trol could be greatly improved by introducing a con-
tinuous-time state feedback control implemented by an
analog circuit. Thus, a steady-state position error of
within 0.005 mm was achieved in all the experiments.
Such accuracy was limited by the optoelectronic po-
sition sensor made for this study.

This paper has presented a practical design and
implementation method of multivariable sliding mode
control for a two-degree-of-freedom magnetic suspen-
sion system. A controller design for general magnetic
suspension systems with a greater degree of freedom
could be based on the the proposed method instead of
using single-input single-output sliding mode control

02

015+

-0 05 9

Position error(mm)

-01p R

-0 15¢ q

-0.2 " n .

Time(sec)

Fig. 7. Response of robustness test against parameter variations and
step-type external disturbance.
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techniques. Furthermore, this paper has also provided
a real case of experimental study on multivariable
sliding mode control.
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