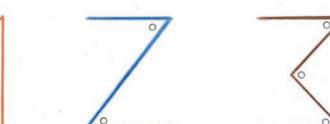
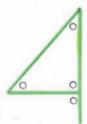
解開數字之謎

原始阿拉伯數字 1 、 2 、 3 、 4 是這樣寫的,底下一排數字中的小圈圈標示來角。





阿拉伯數字是由印度人在西元第3世紀發明的,

現在已正名為「印度·阿拉伯數字」。

據說這10個符號的意義,

原本是根據每一個符號的夾角數目來定義的。

余樹楨

在人類社會裡除了音符之外,阿拉伯數字是通行世界的另一種共同符號。阿拉伯數字的發音,隨著語言的不同各有變化,但符號是全球一致的。這個包括從0到9的10個符號,是由印度

阿拉伯數字的發音,隨著語言的不同各有變化,但符號是全球一致的。 這個包括從 0 到 9 的 10 個符號,是由印度人在西元第 3 世紀發明的, 經由阿拉伯傳入西歐。 人在西元第3世紀發明的,經由阿拉伯傳入西歐。歐洲人以為是阿拉伯人發明的,因此稱為「阿拉伯數字」,現在已正名為「印度・阿拉伯數字」。據說這10個符號的意義,原本是根據每一個符號的夾角數目來定義的。

原始的阿拉伯數字1有如一個鉤子,只有一個夾角,代表1。書寫體的1已經簡化爲一直線,但是許多印刷體仍然保留一個鉤。原始阿拉伯數字的2有兩個夾角,現在的寫法已把上邊的一個夾角圓弧化而看不出來。阿拉伯數字3的原始符號有3個夾角,今天的寫法已經把上下兩個夾角圓弧化,但中間的夾角仍然清晰可見。

原始阿拉伯數字4的符號有4個夾角,在原始的寫法中,水平那一直線並不穿越垂直的那一條線。筆者在美國求學時,看到美

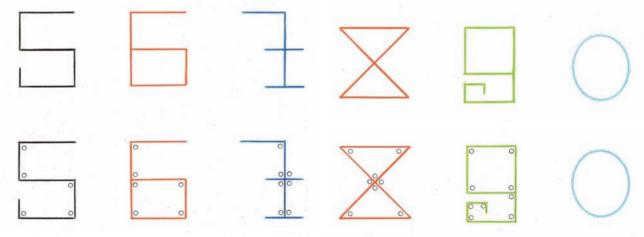
國同學書寫4的時候,水平線常 只是碰觸垂直線而已,並沒有交 叉通過。當時覺得這可能是他們 的習慣寫法,沒想到原來這正符 合阿拉伯數字4的原始寫法。

原始阿拉伯數字5的符號有5個夾角,隨著寫法的演化,今天的5已把底下3個夾角全部圓弧化而看不出來,只剩上邊2個夾角。至於6,今天的寫法由於圓弧化,只能勉強看到中間兩個夾角,然而原始符號卻有6個夾角。原始阿拉伯數字7當然有7個夾角,今天的印刷體由於省略了中間及底下的兩條水平線,而看不出夾角的正確數目。不過有不少人寫7的時候,會加上中間的那一條水平線,這大概是原始符號的痕跡了。

至於8這個阿拉伯數字,現 在的寫法只能看出中間4個夾 角,因爲其他的夾角都被圓弧化 了,原始的8的確有8個夾角。到 了奇數之窮的9,今天的寫法也 一樣只能勉強看到中間兩個夾 角,然而原始的符號確實有9個 夾角,今天印刷體中的9,尾巴 特別捲曲,正是原始符號的遺 跡。最後來到0,原始符號與今 天的寫法是一樣的,它是一個圓 圈,沒有任何夾角,因此代表 零。從以上的說明看起來,阿拉 伯數字的原始符號是以夾角數目 來代表該符號的意義,不也是很 有創意的一種方法嗎?

0與1誰先開始

從小我們就學會扳著手指數數兒,人類的左右手各有5個指頭,因此十進位的數學表達十分適合地球人。在史蒂芬·史匹柏的電影〈外星人〉(The Extra-Terrestrial, ET)中,那位小外星人只有4個指頭,用十進位計數似



阿拉伯數字 $5 \times 6 \times 7 \times 8 \times 9 \times 0$ 的原始寫法,下面一排數字中的小圈圈標示夾角,0是沒有夾角的。

乎並不方便,猜想他們極有可能 使用八進位數學。當然今天電子 計算機使用的二進位算術,只要0 與1、黑與白、圈與叉、或開與 關,使用兩個不同的符號就可以 表達所有的數字。

十進位算術對一般人而言, 通常是在真正了解十進位是如何 表達一個數目之前,就已經很熟 悉地使用它了。比如說一個數字 123.625,我們能立刻讀出壹百貳 拾參點陸貳伍,連小朋友也知道 它的大小。但是國小數學老師似乎 並沒有教我們,123.625其實是1× $10^2+2\times10^1+3\times10^0+6\times10^1+2\times10^2+$ 5×10^{-3} 的簡便寫法,也就是說 123.625=100+20+3+0.6+0.02+0.005 ,所以說百位 (10^2) 、十位 (10^1) 、 個位 (10^0) 的觀念其實已經隱藏在 我們的心中。

當然小學生尚未學到數學中 「冪」的觀念,實在也很難講得那 麼透徹。從「冪」的角度來看, 因爲底數是10,所以個位、十 位、百位等的次方,分別是0、 1、2等,依此類推。也就是說十 進位的整數部分,各個位數的冪 是從0開始累加的,同時小數部 分各個位數的冪是從-1開始遞減 的。這就涉及到計數是從0開 始,還是從1開始的問題。

深入討論這個問題之前,先 講一個爬樓梯的急智問答。題目 是:某人從大廳爬到二樓需10秒 鐘,若各樓層一樣高,而且他爬 樓梯的速度固定,請問他爬到四 樓需時若干秒?很多人會不假思 索地回答說20秒或40秒,當然也 有不少人會說出30秒的答案。回 答20秒,是因爲直覺反應認爲四 樓是二樓的兩倍高;回答40秒, 是因爲直覺反應認爲爬一層樓要 10秒鐘,爬到四樓自然就要40 秒。這就是計數從0還是從1開始 所產生的問題。

如果在英國,20秒的確是正確答案,因為英國大廳在ground floor,ground floor上去才是一樓,也就是說地面樓是第0樓。但是很多國家的大廳是在一樓,也就是說地面的那一層就是一樓,台灣也是如此。從地面樓爬上四樓,在英國需爬4個樓層,但在台灣只需爬3個樓層,因此在台灣30秒是正確的答案。這顯然是從0開始還是從1開始計數所產生的問題。

再看看掛在牆上的月曆,一般可以看到兩種標示星期的排法:一種是禮拜一擺在一個星期的第1天,禮拜天擺在最後(多數歐洲、南非、南美等國);另一種是把星期天當作一個禮拜的第1天,星期六是第7天(英、美、加拿大、澳洲等國家)。這也是計數從0開始與從1開始所造成的不同結果。

雙重制度

我們小孩一出生就是1歲,即使是除夕那天出生,第2天就兩歲了,這是我們文化中習於所謂虛歲算法的必然結果。也有人說生命本來就是從媽媽受孕就開始了,因此10月懷胎後出生算1歲,似乎也還說得過去(但年初出生的又如何說?)。不過今天許多法律文件講的是足歲,足歲的計算標準是以出生時爲0歲而非1歲。一個人從呱呱墜地出生、孩提時代入學、投票法定年齡、乃

我國多把禮拜天當作一星期的第1天,禮拜一是第2天,依此類推,禮拜六是第7天。

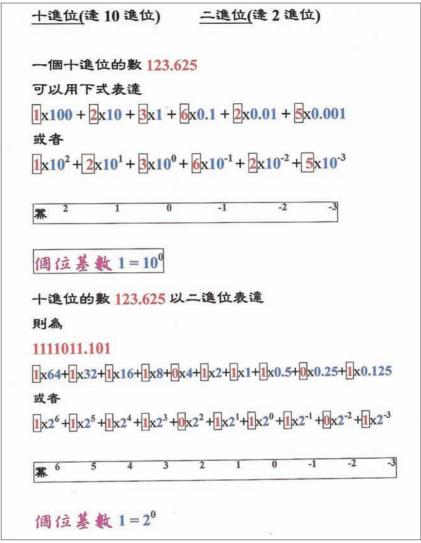
至於就業退休,有太多法律事件 是以足歲爲依據的。

我們的文化中常有著兩個不 一致,又同時被採行的制度。簡 單地說,傳統文化習俗是一個系 統,然而如民法等法律規章又是 另一個系統,兩者在日常生活中 運作,大部分的情況下兩者並不 衝突,但是也有互相矛盾的時 候。就拿結婚事件來說,早期我 們祖父母輩以上的婚姻,如根據 民法的定義,有許多是根本無效 的,既沒有公開儀式,也沒有結 婚證書,也沒有到戶政機關登 記,不過他們卻多能白首偕老。 有些事故或糾紛,其實是導源於 法律與民俗不一致的結果。這種 雙重制度也帶給這個社會額外的 負擔與成本。

0與1是計數的基本

再回頭比較十進位與二進位 計數。使用十進位數學時,個位 數、十位數、百位數等各相鄰位 數之間,有10倍的關係。因此以 10當底數時,個位數、十位數、 百位數等整數部分的幂(次方) 分別是0、1、2等依序遞增,小 數部分則由一1、一2、一3等依 序遞減。

二進位計數則以2為底數, 各相鄰位數之間有兩倍的關係。 然而各位數的指數(幂)與十進 位計數完全一樣,整數部分由 0、1、2依序遞增,小數部分由 -1、-2、-3依序遞減。因此 十進位計數的123.625可以寫成1×



 $10^2+2\times10^1+3\times10^0+6\times10^{-1}+2\times10^2+5$ × 10^3 ,而二進位計數法則寫成 $1\times2^6+1\times2^5+1\times2^4+1\times2^3+0\times2^2+1\times2^4+1\times2^0+1\times$

十進位與二進位計數都同樣 使用次方表示法,這是兩種計數 法相同的地方。此外,兩種計數 法的個位數不管是10°或是2°,基 值都是1。因此乍看之下1好像是 計數的起頭,然而這個1卻又是源 自任何底數 0 次方的結果,似乎 0 才是計數的最根本源頭。而且不論十進位、二進位、八進位、乃至十六進位計數,個位數的基值都是 1 ,指數永遠是 0 。所以說 0 與 1 就是計數的基本,缺一不可。

余樹楨

成功大學地球科學系